TY - JOUR A1 - Peters, R. A1 - Elbers, I. A1 - Undas, A. A1 - Sijtsma, E. A1 - Briffa, S. A1 - Carnell-Morris, P. A1 - Siupa, A. A1 - Yoon, T.-H. A1 - Burr, L. A1 - Schmid, D. A1 - Tentschert, J. A1 - Hachenberger, Y. A1 - Jungnickel, H. A1 - Luch, A. A1 - Meier, F. A1 - Kocic, J. A1 - Kim, J. A1 - Park, B. C. A1 - Hardy, B. A1 - Johnston, C. A1 - Jurkschat, K. A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan A1 - Lynch, I. A1 - Valsami-Jones, E. T1 - Benchmarking the ACEnano toolbox for characterisation of nanoparticle size and concentration by interlaboratory comparisons N2 - ACEnano is an EU-funded project which aims at developing, optimising and validating methods for the detection and characterisation of nanomaterials (NMs) in increasingly complex matrices to improve confidence in the results and support their use in regulation. Within this project, several interlaboratory comparisons (ILCs) for the determination of particle size and concentration have been organised to benchmark existing analytical methods. In this paper the results of a number of these ILCs for the characterisation of NMs are presented and discussed. The results of the analyses of pristine well-defined particles such as 60 nm Au NMs in a simple aqueous suspension showed that laboratories are well capable of determining the sizes of these particles. The analysis of particles in complex matrices or formulations such as consumer products resulted in larger variations in particle sizes within technologies and clear differences in capability between techniques. Sunscreen lotion sample analysis by laboratories using spICP-MS and TEM/SEM identified and confirmed the TiO2 particles as being nanoscale and compliant with the EU definition of an NM for regulatory purposes. In a toothpaste sample orthogonal results by PTA, spICP-MS and TEM/SEM agreed and stated the TiO2 particles as not fitting the EU definition of an NM. In general, from the results of these ILCs we conclude that laboratories are well capable of determining particle sizes of NM, even in fairly complex formulations. KW - Nanomaterials KW - Benchmarking KW - Inter-laboratory comparison KW - ACEnano KW - Characterisation KW - Size KW - Concentration PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-531852 SN - 1420-3049 VL - 26 IS - 17 SP - 1 EP - 23 PB - MDPI CY - Basel AN - OPUS4-53185 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Shard, A. G. A1 - Hodoroaba, Vasile-Dan A1 - Unger, Wolfgang ED - Hodoroaba, Vasile-Dan ED - Unger, Wolfgang ED - Shard, A. G. T1 - Introduction N2 - The purpose of this book is to provide a comprehensive collection of analytical methods that are commonly used to measure nanoparticles, providing information on one, or more, property of importance. The chapters provide up-to-date information and guidance on the use of these techniques, detailing the manner in which they may be reliably employed. Within this chapter, we detail the rationale and context of the whole book, which is driven by the observation of a low level of reproducibility in nanoparticle research. The aim of the book is to encourage awareness of both the strengths and weaknesses of the various methods used to measure nanoparticles and raise awareness of the range of methods that are available. The editors of the book have, for many years, been engaged in European projects and standardization activities concerned with nanoparticle analysis and have identified authors who are experts in the various methods included within the book. This has produced a book that can be used as a definitive guide to current best practice in nanoparticle measurement. KW - Nanoparticles KW - Size distribution KW - Shape KW - Chemistry KW - Coating KW - Concentration KW - Standards KW - Charge KW - Characterisation PY - 2020 SN - 978-0-12-814182-3 U6 - https://doi.org/10.1016/B978-0-12-814182-3.00001-8 SP - 1 EP - 6 PB - Elsevier CY - Amsterdam AN - OPUS4-50166 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -