TY - CONF A1 - Stephan, Ina A1 - Knabe, Nicole A1 - Koerdt, Andrea A1 - Martin-Sanchez, Pedro Maria A1 - Schwibbert, Karin A1 - Özcan Sandikcioglu, Özlem A1 - Kunte, Hans-Jörg A1 - Schreiber, Frank A1 - Pietsch, Franziska A1 - McMahon, Dino Peter A1 - Stephan, Ina A1 - Villa, F. A1 - Capitelli, F. A1 - Sand, W. T1 - Reference Organisms in Materials Science: Why and How? N2 - Materials are subject to environmental constraints that include biological, chemical and physical factors. To gain confidence about durability and long-term performance of any material, environmental resistance testing procedures have to be amended with modern simulation procedures that include biological components. In fact, any environmentally exposed surface at temperatures lower than 121 °C will be home to microbial growth, even at high salt concentrations, extreme pH, environmental pollution, low water potential, and intense irradiation – everywhere where water is liquid and available. As a consequence, complex microbial ecosystems called biofilms are self-sufficient and found on almost all solid-air-water interfaces. Obviously, environmental changes perturb biofilm development but over a number of seasons, these changes result in relatively stable microbial communities peculiar and adapted to a particular niche and material. Certain microbial settlers are indicative of, and in a real sense mark, a particular biofilm and can, thus, be considered as “reference organisms”. Characteristic reference organisms’ peculiar to specific material-inhabiting communities can be isolated, identified, characterised and used in standard test procedures as well as research into materials science (materials improvement). In this presentation classical microbiological, genetic and molecular methods for studying reference organisms and their roles in materials deterioration will be presented. We will present a set of different reference organisms that are currently in focus of our research and testing development. T2 - IBBS 17 - The 17th International Biodeterioration & Biodegradation Symposium CY - Manchester, United Kingdom DA - 06.09.2017 KW - Biofilm KW - Biodeterioration KW - Knufia petricola KW - Bioprospecting fuels KW - Solar panels PY - 2017 AN - OPUS4-42460 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Knisz, J. A1 - Eckert, R. A1 - Gieg, L. A1 - Koerdt, Andrea A1 - Lee, J. A1 - Silva, E. A1 - Skovhus, T. L. A1 - An-Stepec, B. A. A1 - Wade, S. A. T1 - Microbiologically Influenced Corrosion - More than just Microorganisms JF - Microbiologically Influenced Corrosion - More than just Microorganisms N2 - Microbiologically influenced corrosion (MIC) is a phenomenon of increasing concern which affects various materials and sectors of society. MIC describes the effects, often negative, that a material can experience due to the presence of microorganisms. Unfortunately, although several research groups and industrial actors worldwide have already addressed MIC, discussions are fragmented, while information sharing and willingness to reach out to other disciplines is limited. A truly interdisciplinary approach, that would be logical for this material/biology/chemistry-related challenge, is rarely taken. In this review we highlight critical non-biological aspects of MIC that can sometimes be overlooked by microbiologists working on MIC but are highly relevant for an overall understanding of this phenomenon. Here, we identify gaps, methods and approaches to help solve MIC related challenges, with an emphasis on the MIC of metals. We also discuss the application of existing tools and approaches for managing MIC and propose ideas to promote an improved understanding of MIC. Furthermore, we highlight areas where the insights and expertise of microbiologists are needed to help progress this field. KW - MIC KW - Biodeterioration KW - Biocorrosion KW - Interdisciplinarity KW - Multiple lines of evidence PY - 2023 DO - https://doi.org/10.1093/femsre/fuad041 SN - 0168-6445 VL - 47 IS - 5 SP - 1 EP - 70 PB - FEMS Microbiology Reviews AN - OPUS4-58066 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -