TY - JOUR A1 - Tran, V. C. A1 - Nguyen, V. H. A1 - Tuma, Dirk A1 - Shim, J.-J. T1 - Ionic liquid mediated synthesis of poly(2-hydroxyethyl methacrylate-block-methyl methacrylate)/Fe3O4 core–shell structured nanocomposite by ATRP method N2 - A hybrid nanocomposite of magnetic nanoparticles (Fe3O4) and poly(2-hydroxyethyl methacrylate)-blockpoly(methyl methacrylate) (PHEMA-b-PMMA) was synthesized successfully by the atom transfer radical polymerization (ATRP) in an ionic liquid (IL), 1-butyl-3-methylimidazolium hexafluorophosphate ([Bmim]PF6). Fe3O4 nanoparticles were first surface-modified with the initiator, 2-bromoisobutyryl bromide (BiBBr), in dimethylformamide (DMF) solvent, which produced the macro-initiator, Fe3O4-BiB, to initiate the polymerization reactions for the synthesis of the block polymer, PHEMA-b-PMMA. After immobilizing the Initiator on the surface of Fe3O4, the block polymer chains were grafted successfully onto the Fe3O4 surface, causing the Formation of a core-shell nanostructure. The incorporation of Fe3O4 in the nanocomposite was confirmed by attenuated total reflectance-Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, thermogravimetric analysis, and X-ray photoelectron spectroscopy. The thermal stability and magnetic properties increased with increasing amount of Fe3O4 in the nanocomposite. KW - Nanocomposite KW - Block copolymer KW - Fe3O4 nanoparticles KW - Ionic liquid KW - Atom transfer radical polymerization PY - 2016 U6 - https://doi.org/10.1007/s00396-016-3835-5 SN - 1435-1536 SN - 0303-402X VL - 294 IS - 4 SP - 777 EP - 785 PB - Springer International Publishing AG CY - Berlin AN - OPUS4-35893 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -