TY - CONF A1 - Steppan, Enrico A1 - Mantzke, Philipp A1 - Kannengießer, Thomas T1 - Thermal desorption analysis of hydrogen trapping in micro-alloyed high strength steels N2 - Hydrogen can have an extreme degradation effects in steels, particularly concerning the mechanical properties. These effects can lead to hydrogen assisted cracking in micro-alloyed high strength steels during fabrication and/or operation in industrial applications. The Carrier Gas Hot Extraction method, which functionally combines a mass spectrometer with a Thermal Desorption Analysis process, was used for the detection of ultra-low diffusible hydrogen concentrations in the material specimens. The work shows the interaction between hydrogen and lattice defects in different micro-alloyed materials and HAZ. These steels were prepared in a quenched and tempered condition and in a thermo-mechanically rolled condition. The trapping characteristics of two steel grades, S690QL and S700MC, were studied with respect to the activation energy dependent on carbon content and micro-alloying elements such as Ti, Nb, Mo, Cr and V. The two steel grades exhibited several types of traps: carbide formations, dislocations and/or grain boundaries were common, which can influence activation energy and hydrogen solubility. The type and dimension of inclusions or particles also affected the hydrogen trapping behavior. A decrease of carbon and specific alloying elements in MC steels led to a change in the activation energy binding the trapped hydrogen. This thermo-mechanically hot rolled steel revealed an increased interaction between hydrogen and precipitations. The higher carbon content in the quenched and tempered steel led to a higher interaction between hydrogen and iron carbide, specifically in the martensitic phase. Furthermore,the trapping behavior in HAZ showed a significant increase in activation energy, especially in the coarse grained microstructure. T2 - 69th IIW Annual Assembly and International Conference CY - Melbourne, Australia DA - 10.07.2016 KW - Hydrogen embrittlement KW - Micro-alloyed high strength steels KW - Hydrogen trapping KW - Thermal desorption analysis (TDA) KW - S690 KW - S700 KW - Quenched and tempered KW - Thermo-mechanical PY - 2016 AN - OPUS4-39459 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Steppan, Enrico A1 - Mantzke, Phillipp A1 - Kannengießer, Thomas T1 - Thermal desoprtion analysis of hydrogen trapping in micro-alloyed high strength steels N2 - Hydrogen can cause unexpected material failure under consideration of stresses (external/internal) during manufacturing, processing or service of the materials. This failure is mostly based on a certain degradation of the mechanical properties. Thus, the correlation of hydrogen trapping vs. a respective microstructure is necessary for high strength steels. Thus, the scope of this work is the improvement of existing hydrogen trap models by verification of activation energies for hydrogen traps as well as the influence of the determination method. In this scope, the thermal desorption method is appropriate to distinguish between different hydrogen traps. Nevertheless, the specimen temperature has to be accounted very carefully in case of calculating the necessary trap energy. T2 - IIW Intermediate Meeting, Meeting of commission II-A CY - Madrid, Spain DA - 29.02.2016 KW - Thermal desorption analysis (TDA) KW - Hydrogen trapping KW - High strength steels KW - Degradation KW - Heat treatment condition PY - 2016 AN - OPUS4-35544 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -