TY - CONF A1 - Resch-Genger, Ute A1 - Wegner, Karl David A1 - Kalot, G. A1 - Busser, B. A1 - Pliquett, J. A1 - Köster, U. A1 - Koll, J. C. A1 - Denat, F. A1 - Bodio, E. A1 - Goze, C. A1 - Sacey, L. T1 - NIR aza-BODIPY: a new vector for boron neutron capture therapy (BNCT) N2 - Boron neutron capture therapy (BNCT) relies on the activation of 10B by thermal neutrons, which results in small highly energetic particle emission inducing cancer cells damage. However, in order to overcome the limits of the currently used BNCT agents, it is necessary to design new systems, which can specifically accumulate and deliver a sufficient amount of 10B in tumors. In this study, we designed a 10B-BSH-containing aza-BODIPY (aza-SWIR-BSH). It enabled the efficient vectorization of clinically used 10B-BSH to the tumor, resulting in higher therapeutic activity than the 10B-BSH alone. T2 - EMIM 2021 CY - Göttingen, Germany DA - 24.08.2021 KW - Flourescence KW - Optical probe KW - Dye KW - Photophysics KW - Quantum yield KW - Mechanism KW - NIR KW - SWIR KW - Imaging KW - Method KW - Quality assurance KW - BODIPY KW - Boron Neutron Capture Therapy (BNCT) KW - Medicine KW - Life sciences PY - 2021 AN - OPUS4-53731 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Radunz, Sebastian A1 - Wedepohl, S. A1 - Röhr, Mathilde A1 - Calderón, M. A1 - Tschiche, H. R. A1 - Resch-Genger, Ute T1 - pH-Activatable Singlet Oxygen-Generating Boron-dipyrromethenes N2 - Singlet oxygen can severely damage biological tissue, which is exploited in photodynamic therapy (PDT). In PDT, the effective range is limited by the distribution of the photosensitizer (PS) and the illuminated area. However, no distinction is made between healthy and pathological tissue, which can cause undesired damage. This encouraged us to exploit the more acidic pH of cancerous tissue and design pH-controllable singlet oxygen-generating boron-dipyrromethene (BODIPY) dyes. A pH sensitivity of the dyes is achieved by the introduction of an electronically decoupled, photoinduced electron transfer (PET)-capable subunit in meso-position of the BODIPY core. To favor triplet-state formation as required for singlet Oxygen generation, iodine substituents were introduced at the chromophore core. The resulting pH-controlled singlet oxygen-generating dyes with pKa values in the physiological range were subsequently assessed regarding their potential as pH-controlled PS for PDT. Using HeLa cells, we could successfully demonstrate markedly different pH-dependent cytotoxicities upon illumination. KW - Fluorescence KW - Sensor KW - Switch KW - pH KW - Singlet oxygen KW - PDT KW - Cell KW - BODIPY KW - Dye KW - Probe KW - Synthesis PY - 2019 U6 - https://doi.org/10.1021/acs.jmedchem.9b01873 VL - 63 IS - 4 SP - 1699 EP - 1708 PB - ACS Publications AN - OPUS4-50554 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Radunz, Sebastian A1 - Tschiche, Harald Rune A1 - Moldenhauer, Daniel A1 - Resch-Genger, Ute T1 - Broad range ON/OFF pH sensors based on pKa tunable fluorescent BODIPYs N2 - A set of highly fluorescent, pH-responsive boron dipyrromethene dyes covering the pH range of 5-12 is presented for broad range pH measurements in mixed aqueous-organic median and polymer matrices. Readout in the intensity Domain with low cost and miniaturized Instrumentation utilizes reversible protonation induced switching ON of their initially completely quenched flourescence mediated by photoinduced electron Transfer. All dyes, rationally designed to reveal closely matching Absorption and Emission properties, are accessible via facile two-step reactions in Overall yields of up to 20%. By modifying the Substitution pattern of the meso-Aryl substiuent, the pKa values could be fine-tuned from 6 to 11. Integration of these molecules into polymeric films by a simple mixing procedure yielded reversible and longterm stable pH sensors for naked eye detection. KW - Fluorescence KW - Sensor KW - PH KW - Dye KW - BODIPY KW - Synthesis KW - Quantification KW - Film KW - Quantum yield KW - Lifetime KW - PET PY - 2017 U6 - https://doi.org/10.1016/j.snb.2017.05.080 SN - 0925-4005 VL - 251 SP - 490 EP - 494 PB - Elsevier AN - OPUS4-41782 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Radunz, Sebastian A1 - Kraus, Werner A1 - Bischoff, F. A. A1 - Emmerling, Franziska A1 - Resch-Genger, Ute A1 - Tschiche, Harald T1 - Temperature- and Structure-Dependent Optical Properties and Photophysics of BODIPY Dyes N2 - We report on the temperature- and structural-dependent optical properties and photophysics of a set of boron dipyrromethene (BODIPY) dyes with different substitution patterns of their meso-aryl subunit. Single-crystal Xray diffraction analysis of the compounds enabled a classification of the dyes into a sterically hindered and a unhindered group. The steric hindrance refers to a blocked rotational motion of the aryl subunit around the bond connecting this moiety to the meso-position of the BODIPY core. The energy barriers related to this rotation were simulated by DFT calculations. As follows from the relatively low rotational barrier calculated to about 17 kcal/mol, a free rotation is only possible for sterically unhindered compounds. Rotational barriers of more than 40 kcal/mol determined for the sterically hindered compounds suggest an effective freezing of the rotational motion in These molecules. With the aid of temperature-dependent spectroscopic measurements, we could show that the ability to rotate directly affects the optical properties of our set of BODIPY dyes. This accounts for the strong temperature dependence of the fluorescence of the sterically unhindered compounds which show a drastic decrease in fluorescence quantum yield and a significant shortening in fluorescence lifetime upon heating. The optical properties of the sterically hindered compounds, however, are barely affected by temperature. Our results suggest a nonradiative deactivation of the first excited singlet state of the sterically unhindered compounds caused by a conical intersection of the potential energy surfaces of the Ground and first excited state which is accessible by rotation of the meso-subunit. This is in good agreement with previously reported deactivation mechanisms. In addition, our results suggest the presence of a second nonradiative depopulation pathway of the first excited singlet state which is particularly relevant for the sterically hindered compounds. KW - Fluorescence KW - Sensor KW - Switch KW - pH KW - BODIPY KW - Dye KW - Probe KW - Synthesis KW - Photophysics KW - Mechanism PY - 2020 U6 - https://doi.org/10.1021/acs.jpca.9b11859 SN - 1089-5639 VL - 124 IS - 9 SP - 1787 EP - 1797 PB - American Chemical Society AN - OPUS4-50639 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Liu, J.-Y. A1 - Hou, X.-N. A1 - Tian, Y. A1 - Jiang, L. A1 - Deng, S. A1 - Röder, B. A1 - Ermilov, Eugeny T1 - Photoinduced energy and charge transfer in a bis(triphenylamine)-BODIPY-C60 artificial photosynthetic system N2 - Triphenylamines (TPAs), boron dipyrromethenes (BODIPYs) and fullerenes C60 are excellent building blocks for the design of artificial photosynthetic systems. In the present work, we report the synthesis, characterization and detailed photophysical studies of a novel (TPA)2–BODIPY–C60 tetrad in polar and nonpolar solvents. The absorption spectrum of this compound covered virtually the entire visible Region (350–700 nm) and could be interpreted as a superposition of the spectra of individual components. Upon TPA-part excitation, a fast and very efficient excitation energy transfer (EET) delivers the excitation to the BODIPY moiety resulting in complete quenching of the TPA first excited singlet state as well as the appearance of the BODIPY fluorescence. The efficiency of EET process was estimated to be 1. Direct or indirect (via EET) excitation of the BODIPY-part of the tetrad is followed by photoinduced charge transfer to the charge-separated state BODIPY+–C60- irrespective of the solvent used. In polar N,N-dimethylformamide (DMF)charge recombination occurs directly to the ground state with the Charge recombination rate, kCR, slower than 108 s-1, whereas in nonpolar toluene (TOL) a small energy gap between the charge-separated state and first excited singlet state of the BODIPY moiety facilitates the back charge transfer process. The latter results in the appearance of thermally activated delayed fluorescence. The rate of charge separation was found to be ca. 2 times faster in TOL than in DMF. KW - Charge transfer KW - Energy transfer KW - Artificial photosynthesis KW - BODIPY KW - TPA KW - Fullerene C60 PY - 2016 U6 - https://doi.org/10.1039/c6ra06841c SN - 2046-2069 VL - 6 IS - 62 SP - 57293 EP - 57305 AN - OPUS4-37080 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -