TY - JOUR A1 - Engelking, Lorenz A1 - Schröpfer, Dirk A1 - Kannengießer, Thomas A1 - Eissel, A. A1 - Treutler, K. A1 - Wesling, V. T1 - Alloy modification for additive manufactured Ni alloy components Part II: Effect on subsequent machining properties JF - Welding in the World N2 - Alloy 36 (1.3912) is an alloy with 36% nickel and 64% iron and is generally classified as a difficult-to-cut material. Increasingly complex structures and the optimization of resource efficiency are making additive manufacturing (AM) more and more attractive for the manufacture or repair of components. Subsequent machining of AM components is unavoidable for its final contour. By using modern, hybrid machining processes, e.g., ultrasonic-assisted milling (US), it is possible to improve the cutting situation regarding the resulting surface integrity as well as the cutting force. Part I deals with the influence of the alloying elements Ti, Zr, and Hf on the microstructure and the hardness of the initial alloy 36. Part II focusses on the effect of the alloy modifications and the ultrasonic assistance on machinability as well as on the surface integrity after finish-milling. The results show a highly significant influence of the ultrasonic assistance. The cutting force during the US is reduced by over 50% and the roughness of approx. 50% compared to conventional milling (CM) for all materials investigated. Moreover, the US causes a defect-free surface and induces near-surface compressive residual stresses. CM leads to a near-surface stress state of approx. 0 MPa. T2 - 75th IIW Annual Assembly CY - Tokyo, Japan DA - 17.07.2022 KW - Alloy 36 KW - Ultrasonic-assisted milling KW - Surface integrity KW - Modification of structural morphology PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-566609 DO - https://doi.org/10.1007/s40194-022-01438-7 SP - 1 EP - 8 PB - Springer CY - Heidelberg AN - OPUS4-56660 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Engelking, Lorenz A1 - Eissel, A. A1 - Schröpfer, Dirk A1 - Treutler, K. A1 - Kannengießer, Thomas A1 - Wesling, V. T1 - Effect of alloy modification for additive manufactured Ni alloy components on microstructure and subsequent machining properties T2 - AWT Fachkonferenz 2022 Additive Fertigung Werkstoffe – Prozesse – Wärmebehandlung Tagungsband N2 - Ni alloys are generally classified as difficult-to-cut materials and cost intensive. Additive manufacturing (AM) offers economic advantages. However, machining of these AM components is mandatory to create the final contour or surface. The inhomogeneous and anisotropic microstructure and properties of AM components causes an unstable cutting process. Moreover, undesirable tensile residual stresses are generated due to subsequent machining. In this investigation, the initial alloy 36 is modified with Ti and Nb up to 1.6 wt.-% and build-up welded via gas metal arc welding (GMAW) and plasma-transferred-arc (PTA). Then, finish-milling tests are carried out to investigate the influence of the modification as well as the cutting parameters on the resulting cutting force and the surface integrity. In addition, the conventional milling process (CM) is compared with the ultrasonic-assisted milling process (US), which has a significant influence on the machinability as well as on the surface integrity. T2 - Additive Fertigung – Werkstoffe – Prozesse – Wärmebehandlung 2022 CY - Bremen, Germany DA - 29.06.2022 KW - Additive manufacturing KW - Alloy 36 KW - Alloy modification KW - Ultrasonic-assisted milling KW - Surface integrity PY - 2022 SP - 57 EP - 67 AN - OPUS4-55430 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Engelking, Lorenz A1 - Eissel, A. A1 - Schröpfer, Dirk A1 - Treutler, K. A1 - Kannengießer, Thomas A1 - Wesling, V. T1 - Optimisation of surface residual stresses using ultrasonic‑assisted milling for wire‑arc additive manufactured Ni alloy components JF - The International Journal of Advanced Manufacturing Technology N2 - Nickel alloys are cost intensive materials and generally classified as difficult-to-cut material. However, machining of these materials is needed especially in case of alloy 36 (1.3912), which is commonly used in mould construction for the production of fibre-reinforced composites. With regard to repair, modification and manufacturing of such components, additive manufacturing offers significant economic advantages. Nevertheless, subsequent machining steps are needed to achieve the final component contour and defined surface conditions. Dependent on the material and machining process conditions, detrimental tensile residual stresses may be the result on the machined surface, having negative impact on the component performance and safety. In this investigation, machining experiments were carried out on wire arc additive manufactured components made of alloy 36, varying the cutting speed and the feed rate. In addition, the conventional milling process (CM) was compared with a modern, hybrid machining process, the ultrasonic-assisted milling (US). The cutting forces and the surface-near residual stresses were analysed using X-ray diffraction. A significant improvement of the machinability as well as the surface integrity by using the ultrasonic assistance was observed, especially at low cutting speeds. The CM induced mainly tensile residual stresses, the US mainly compressive residual stresses. KW - Surface integrity KW - Ultrasonic-assisted milling KW - Additive manufacturing KW - Ni alloy KW - Alloy 36 PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-575246 DO - https://doi.org/10.1007/s00170-023-11326-z SN - 1433-3015 VL - 126 IS - 9 SP - 4191 EP - 4198 PB - Springer Nature AN - OPUS4-57524 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Engelking, Lorenz A1 - Börner, Andreas A1 - Schröpfer, Dirk A1 - Eissel, A. A1 - Kannengießer, Thomas A1 - Treutler, K. A1 - Wesling, V. T1 - Ultraschallunterstütztes Schlichtfräsen einer schwer spanbaren FeNi-Legierung N2 - Zunächst wird die BAM vorgestellt. Anschließend wird die Messung bzw. Bestimmung der Amplitude der Ultraschallunterstützung erläutert, gefolgt von Schlichtfräsexperimenten an AM-Bauteilen aus einer schwer spanbaren FeNi-Legierung. Es werden die Ergebnisse der Zerspankraft, der Rauheit und der Eigenspannungen vorgestellt. T2 - Ultrasonic Seminar CY - Stipshausen, Germany DA - 08.09.2022 KW - Ultraschallunterstütztes Fräsen KW - Alloy 36 KW - Schwer spanbar KW - Additive Fertigung PY - 2022 AN - OPUS4-55709 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Engelking, Lorenz A1 - Eissel, A. A1 - Schröpfer, Dirk A1 - Kannengießer, Thomas A1 - Wesling, V. T1 - Optimisation of surface residual stresses using hybrid milling processes for additive manufactured Ni alloy components N2 - Ni alloys are cost intensive materials and generally classified as difficult-to-cut materials. However, machining of these materials is needed especially in case of alloy 36 (1.3912), which is commonly used in mould construction for the production of fibre-reinforced composites. With regard to repair, modification and manufacturing of such components, additive manufacturing offers significant economic advantages. Nevertheless, subsequent machining steps are needed to achieve the final component contour and defined surface conditions. Dependent on the material and machining process conditions, detrimental tensile residual stresses may be the result on the machined surface, having negative impact on the component performance and safety. Recent studies exhibited that hybrid machining processes, such as ultrasonic-assisted milling (USAM), are suitable for achieving favourable residual stress states at the surface of difficult-to-cut Ni-Cr alloys. In this investigation, wire arc additive manufactured (WAAM) specimens of alloy 36 were finish milled under different milling conditions. In addition to the machined surfaces condition and topology, the surface-near residual stresses were analysed using X-ray diffraction (XRD). Especially for low cutting speeds, significantly improved surface properties, roughness parameters and lower mechanical and microstructural degradations were found for the specimen machined with USAM compared to conventional milling. The improved surface integrity could furthermore be observed by a significant reduction of the tensile residual stresses in the surface boundary area. T2 - ICRS11, 11th International Conference on Residual Stresses CY - Nancy, France DA - 27.03.2022 KW - Surface integrity KW - Ultrasonic-assisted milling KW - Additive manufacturing KW - Ni alloy KW - Alloy 36 PY - 2022 AN - OPUS4-54904 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Engelking, Lorenz A1 - Eissel, A. A1 - Schröpfer, Dirk A1 - Treutler, K. A1 - Kannengießer, Thomas A1 - Wesling, V. T1 - Optimisation of surface residual stresses using hybrid milling processes for additive manufactured Nickel alloy components N2 - Ni alloys are cost intensive materials and generally classified as difficult-to-cut materials. However, machining of these materials is needed especially in case of alloy 36 (1.3912), which is commonly used in mould construction for the production of fibre-reinforced composites. With regard to repair, modification and manufacturing of such components, additive manufacturing offers significant economic advantages. Nevertheless, subsequent machining steps are needed to achieve the final component contour and defined surface conditions. Dependent on the material and machining process conditions, detrimental tensile residual stresses may be the result on the machined surface, having negative impact on the component performance and safety. Recent studies exhibited that hybrid machining processes, such as ultrasonic-assisted milling (USAM), are suitable for achieving favourable residual stress states at the surface of difficult-to-cut Ni-Cr alloys. In this investigation, wire arc additive manufactured (WAAM) specimens of alloy 36 were finish milled under different milling conditions. In addition to the machined surfaces condition and topology, the surface-near residual stresses were analysed using X-ray diffraction (XRD). Especially for low cutting speeds, significantly improved surface properties, roughness parameters and lower mechanical and microstructural degradations were found for the specimen machined with USAM compared to conventional milling. The improved surface integrity could furthermore be observed by a significant reduction of the tensile residual stresses in the surface boundary area. T2 - Bachelor-, Master-, Doktoranden-Kolloquium, Otto-von-Guericke-Universität Magdeburg CY - Magdeburg, Germany DA - 18.05.2022 KW - Surface integrity KW - Ultrasonic-assisted milling KW - Additive manufacturing KW - Ni alloy KW - Alloy 36 PY - 2022 AN - OPUS4-54908 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Engelking, Lorenz A1 - Schröpfer, Dirk A1 - Kannengießer, Thomas T1 - Untersuchungen zum Einfluss der Amplitude beim ultraschallunterstützten Schlichtfräsen schwer spanbarer FeNi Legierungen N2 - Es werden erzielte Ergebnisse des ultraschallunterstützen Schlichtfräsens einer schwer spanbaren FeNi-Legierung vorgestellt. Dabei wird der Einfluss der Amplitude der Ultraschallunterstützung auf die Zerspankraft sowie die Oberflächenintegrität untersucht, wobei ein besonderer Fokus auf die Passivkraft gelegt wird. Die Ultraschallunterstützung bedingt beim Schlichtfräsen der Alloy 36 im Vergleich zum konventionellen Fräsprozess eine signifikante Reduzierung der resultierenden Zerspankraft sowie der Rauheit. Außerdem werden oberflächennahen Druckeigenspannungen induziert. Eine Angehobene Osziallations-Amplitude beim ultraschallunterstützten Fräsen bewirkt eine Erhöhung des Anteils der Passivkraft an der resultierenden Zerspankraft sowie eine Erhöhung der oberflächennahen Druckeigenspannungen und eine Verringerung von Oberflächendefekten und Rauheitskennwerten. T2 - Bachelor-, Master-, Doktoranden-Kolloquium CY - Magdeburg, Germany DA - 30.11.2022 KW - Ultraschallunterstütztes Fräsen KW - Alloy 36 KW - Oberflächenintegrität PY - 2022 AN - OPUS4-56612 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Engelking, Lorenz A1 - Eissel, A. A1 - Schröpfer, Dirk A1 - Treutler, K. A1 - Kannengießer, Thomas A1 - Wesling, V. T1 - Alloy modification for additive manufactured Ni alloy components Part II: Effect on subsequent machining properties N2 - Alloy 36 (1.3912), also known as “Invar”, is an alloy with 36% nickel. It was developed in 1897 by Guillaume and stands out for its very low thermal expansion coefficient. It is classified as a difficult-to-cut material and is commonly used for the production of fiber-reinforced composites in the field of mold construction. Additive manufacturing (AM) offers many economic advantages regarding the repair, modification and manufacture of entire components. Subsequent machining of the AM components is necessary to account for complex structures, final contours or defined surfaces. This is usually done using a tool with a geometrically defined cutting edge, i.e., milling processes. Surface integrity is determined by metallurgical (e.g., microstructure of the subsurface), topological (e.g., surface defects, roughness) and mechanical (e.g., residual stresses) factors, which is crucial in terms of component safety and performance. Modern, hybrid cutting processes, such as ultrasonic-assisted milling (US), provide potentially improvement of the cutting situation of these components. In part I of this investigation, the initial alloy 36 is modified with the elements Ti, Zr and Nb up to a maximum of 1 wt.-%. The influence of the modification elements on the microstructure as well as on the hardness of the AM components is examined. Part II focusses on the effect of the alloy modifications on machinability as well as on the surface integrity of plasma-transferred-arc-welded (PTA) and finish milled invar components. The results show a significant positive influence of ultrasonic assistance on the resulting cutting force of both materials. The modification with 1% Ti shows a positive influence on the surface integrity, as the roughness of the conventional machining processes is lower compared to the initial alloy, which has to be confirmed in further experiments. T2 - IIW C-II Intermediate meeting CY - Online meeting DA - 17.03.2022 KW - Alloy modification KW - Ultrasonic-assisted milling KW - Plasma-Transferred-Arc KW - Surface integrity KW - Alloy 36 KW - Additive manufacturing PY - 2022 AN - OPUS4-54910 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Engelking, Lorenz A1 - Eissel, A. A1 - Schröpfer, Dirk A1 - Treutler, K. A1 - Kannengießer, Thomas A1 - Wesling, V. T1 - Effect of alloy modification for additive manufactured Ni alloy components on microstructure and subsequent machining properties N2 - Ni alloys are generally classified as difficult-to-cut materials and cost intensive. Additive manufacturing (AM) offers economic advantages. However, machining of these AM components is mandatory to create the final contour or surface. The inhomogeneous and anisotropic microstructure and properties of AM components causes an unstable cutting process. Moreover, undesirable tensile residual stresses are generated due to subsequent machining. In this investigation, the initial alloy 36 is modified with Ti and Nb up to 1.6 wt.-% and build-up welded via gas metal arc welding (GMAW) and plasma-transferred-arc (PTA). Then, finish-milling tests are carried out to investigate the influence of the modification as well as the cutting parameters on the resulting cutting force and the surface integrity. In addition, the conventional milling process (CM) is compared with the ultrasonic-assisted milling process (US), which has a significant influence on the machinability as well as on the surface integrity. T2 - Additive Fertigung – Werkstoffe – Prozesse – Wärmebehandlung 2022 CY - Bremen, Germany DA - 29.06.2022 KW - Additive manufacturing KW - Alloy 36 KW - Alloy modification KW - Ultrasonic-assisted milling KW - Surface integrity PY - 2022 AN - OPUS4-55429 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Engelking, Lorenz A1 - Eissel, A. A1 - Schröpfer, Dirk A1 - Treutler, K. A1 - Kannengießer, Thomas A1 - Wesling, V. T1 - Alloy modification for additive manufactured Ni alloy components Part II: Effect on subsequent machining properties N2 - Alloy 36 (1.3912), also known as “Invar”, is an alloy with 36% nickel. It was developed in 1897 by Guillaume and stands out for its very low thermal expansion coefficient. It is classified as a difficult-to-cut material and is commonly used for the production of fiber-reinforced composites in the field of mold construction. Additive manufacturing (AM) offers many economic advantages regarding the repair, modification and manufacture of entire components. Subsequent machining of the AM components is necessary to account for complex structures, final contours or defined surfaces. In part I of this investigation, the initial alloy 36 is modified with the elements Ti, Zr and Hf up to a maximum of 0.33 wt.-%. The influence of the modification elements on the microstructure as well as on the hardness of the AM components is examined. Part II focusses on the effect of the alloy modifications on machinability as well as on the surface integrity of plasma-transferred-arc-welded (PTA) and finish milled invar components. Machining tests were carried out, to investigate the influence of ultrasonic assistance and the effects of modification elements Ti, Zr and Hf on the occurring cutting forces, temperatures and resulting surface integrity of the AM components made of alloy 36 and their modifications. The results show a significant positive influence of ultrasonic assistance on the resulting cutting force as well as on the roughness of all materials investigated. T2 - 75th IIW Annual Assembly CY - Tokyo, Japan DA - 17.07.2022 KW - Alloy modification KW - Alloy 36 KW - Additive manufacturing KW - Ultrasonic-assisted milling KW - Surface integrity PY - 2022 AN - OPUS4-55432 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -