TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Report ISO/TC202/WG4 X-Ray Spectroscopy, Liaisons with VAMAS and ISO/TC229 Nanotechnologies N2 - The presentation is structured in the following three parts: i) Report of the Working Group 4 X-Ray Spectroscopy including the publication of ISO 15632:2021 Microbeam analysis — Selected instrumental performance parameters for the specification and checking of energy-dispersive X-ray spectrometers for use in electron probe microanalysis, ii) Liaison activities between ISO/TC202 Microbeam Anaylsis and VAMAS/TWA34 Quantitative Microstructural Analysis, and iii) Liaison activities from ISO/TC202 Microbeam Analysis for ISO/TC229 Nanotechnologies. Most relevant projects are highlighted for information and further discussions. New initiatives and better promotion of strategic projects are addressed. T2 - Annual Meeting of ISO/TC 202 Microbeam Analysis CY - Online meeting DA - 25.10.2021 KW - Microbeam Analysis KW - VAMAS KW - ISO/TC 202 KW - ISO/TC 229 KW - electron microscopy KW - X-Ray Spectroscopy KW - EBSD KW - FIB PY - 2021 AN - OPUS4-53625 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ikeda, Yuki A1 - Yuan, R. A1 - Chakraborty, A. A1 - Ghassemi-Armaki, H. A1 - Zuo, J. M. A1 - Maaß, Robert T1 - Early stages of liquid-metal embrittlement in an advanced high-strength steel JF - Materials Today Advances N2 - Grain-boundary degradation via liquid-metal embrittlement (LME) is a prominent and long-standing failure process in next generation advanced high-strength steels. Here we reveal, well ahead of the crack tip, the presences of nano-scale grains of intermetallic phases in Zn-infiltrated but uncracked grain boundaries with scanning- and 4D transmission electron microscopy. Instead of the often-reported Znrich Fe-Zn intermetallics, the nano-scale phase in the uncracked infiltrated grain boundaries is identified as the G-phase, and its presence reveals the local enhancement of strain heterogeneities in the grain boundary network. Based on these observations, we argue that intermetallic phase formation is not occurring after cracking and subsequent liquid Zn infiltration but is instead one of the primary nanoscopic drivers for grain-boundary weakening and crack initiation. These findings shift the focus of LME from micro- and meso-scale crack investigations to the very early stages immediately following Zn diffusion, after which secondary phase nucleation and growth emerge as the root-cause for failure. KW - Advanced high strength steels KW - Liquid metal embrittlement KW - Transmission electron microscopy KW - 4-Dimensional scanning transmission KW - electron microscopy PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-539716 DO - https://doi.org/10.1016/j.mtadv.2021.100196 SN - 2590-0498 VL - 13 IS - 196 SP - 1 EP - 8 PB - Elsevier Ltd. AN - OPUS4-53971 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -