TY - CONF A1 - Mohr, Gunther A1 - Altenburg, Simon A1 - Hilgenberg, Kai T1 - Einfluss der Zwischenlagenzeit und der Bauteilhöhe auf die resultierenden Eigenschaften laserstrahlgeschmolzener austenitischer Stahlbauteile N2 - Das pulverbettbasierte selektive Laserstrahlschmelzen (engl. laser powder bed fusion, L-PBF) ist die am weitesten verbreitete additive Fertigungstechnologie für die Herstellung metallischer Komponenten. Unter der Vielzahl an Einflussfaktoren auf die Qualität und die mechanischen Eigenschaften von L PBF-Bauteilen hat die Zwischenlagenzeit (engl. inter layer time, ILT) bisher kaum Beachtung in der wissenschaftlichen Literatur gefunden, obwohl sie je nach Bauraumausnutzungsgrad stark variieren kann. In diesem Vortrag werden Ergebnisse einer Studie präsentiert, die den Einfluss der ILT in Kombination mit der Bauteilhöhe und unter Berücksichtigung verschiedener Volumenenergiedichten am Beispiel der austenitischen Stahllegierung AISI 316L untersucht. Die Fertigungsprozesse wurden in situ mittels Thermographiekamera überwacht, sodass Informationen über das Abkühlverhalten der Bauteile während des Prozesses gewonnen werden konnten. Es wurden signifikante Effekte der ILT und der Bauteilhöhe auf Wärmeakkumulation, Mikrostruktur, Schmelzbadgeometrie und Härte festgestellt. Ferner konnte ein Anstieg von Defektdichten bei einem gegenseitigen Wechselspiel aus Bauteilhöhe und ILT aufgezeigt werden. Die Zwischenlagenzeit wurde somit als kritischer Faktor für die L-PBF-Fertigung von Realbauteilen identifiziert. T2 - DGM Fachtagung "Werkstoffe und Additive Fertigung" CY - Online meeting DA - 13.05.2020 KW - Laser Powder Bed Fusion KW - Additive Fertigung KW - Zwischenlagenzeit KW - In-situ Monitoring PY - 2020 AN - OPUS4-50788 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Oster, Simon T1 - In-situ Identifikation der Schweißnahtgeometrie bei der Anwendung von MSG-Schweißprozessen N2 - Lichtbogenbasierte Schweißverfahren wie das Metallschutzgasschweißen (MSG) zählen zu den Standardverfahren der Fügetechnik und werden in vielen Industriebereichen automatisiert unter Verwendung von Industrierobotern eingesetzt. Dabei können Schweißnahtabweichungen auftreten, die aus Änderungen der Prozessrandbedingungen und der hohen Prozessdynamik resultieren. Hier ist die Kontrolle von Schmelzbad- und Schweißnahtgeometrie für die Sicherung der Nahtqualität bedeutsam. Durch den Einsatz optischer Sensorsysteme können mit hoher zeitlicher Auflösung in-situ Informationen des Prozesszustands ermittelt werden. Dabei stellen die rauen Prozessbedingungen und die hohe Strahlungsintensität des Lichtbogens eine Herausforderung für die optischen Komponenten dar. Forschungsarbeiten am Institut für Schweißtechnik und Fügetechnik der RWTH Aachen haben gezeigt, dass durch den Einsatz einer HDR-Kamera in Kombination mit einer strukturierten Laserbelichtung gezielt geometrische Informationen des Lichtbogens und des Schmelzbads aus den Prozessaufnahmen gewonnen werden können. In dieser Arbeit wird eine parallele Schweißnaht- und Schmelzbadbeobachtung durchgeführt, wobei geometrische Informationen durch die Anwendung von Bildverarbeitungsalgorithmen extrahiert werden. Dabei wird ein nachlaufendes Sensorsystem eingesetzt, welches aus einer HDR-Kamera und einer Laserbeleuchtung besteht. Es werden diffraktive optische Elemente (DOE) zur Erzeugung von verschiedenen Laserprojektionsmustern verwendet, um sowohl eine unidirektionale als auch eine multidirektionale Prozessbeobachtung durchführen zu können. Aus den geometrischen Informationen werden Kenngrößen berechnet, anhand derer der Prozesszustand beurteilt werden kann. Es zeigt sich, dass anhand der Kenngrößenverläufe Abweichungen in der Schweiß- und Schmelzbadgeometrie und Positionierungsfehler des Roboters identifiziert werden können. T2 - Große Schweißtechnische Tagung - DVS CAMPUS CY - Online meeting DA - 14.09.2020 KW - Schweißnahtgeometrie KW - MSG-Schweißen KW - In-situ Monitoring KW - Schmelzbadbeobachtung PY - 2020 AN - OPUS4-51579 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Oster, Simon T1 - In-situ monitoring by thermography: Influence of the scan angle on the melt pool N2 - Online quality control of security relevant parts manufactured by Laser Powder Bed Fusion (LPBF) remains to be a challenge due to the highly complex process conditions. Furthermore, the influence of characteristic scan strategy parameters is not sufficiently clarified yet due to the commonly used method of single-track investigations. In this contribution, this topic is addressed by observing large 316L volume sections using in-situ melt pool monitoring by thermography in high temporal and spatial resolution. In detail, the influence of the scan angle on the melt pool geometry is investigated on. Characteristic melt pool features are extracted from the image data and analyzed using statistical methods data for altering scan angles. The results show significant changes in the melt pool dimensions and temperature distribution over the scan angle rotation. A first explanation approach is presented that connects the observed changes to phenomena of beam attenuation by metal vapor plume. T2 - 1st Workshop on In-situ Monitoring and Microstructure Development in Additive Manufacturing CY - Online meeting DA - 12.10.2020 KW - Laser Powder Bed Fusion KW - Thermography KW - In-situ Monitoring KW - Angle dependency PY - 2020 AN - OPUS4-51953 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Oster, Simon A1 - Becker, Tina A1 - Breese, Philipp Peter A1 - Scheuschner, Nils A1 - Altenburg, Simon T1 - Machine Learning based defect detection in Laser Powder Bed Fusion utilizing thermographic feature data N2 - The formation of irregularities such as keyhole porosity pose a major challenge to the manufacturing of metal parts by laser powder bed fusion (PBF-LB/M). In-situ thermography as a process monitoring technique shows promising potential in this manner since it is able to extract the thermal history of the part which is closely related to the formation of irregularities. In this study, we investigate the utilization of machine learning algorithms to detect keyhole porosity on the base of thermographic features. Here, as a referential technique, x-ray micro computed tomography is utilized to determine the part's porosity. An enhanced preprocessing workflow inspired by the physics of the keyhole irregularity formation is presented in combination with a customized model architecture. Furthermore, experiments were performed to clarify the role of important parameters of the preprocessing workflow for the task of defect detection . Based on the results, future demands on irregularity prediction in PBF-LB/M are derived. T2 - International Conference on NDE 4.0 CY - Berlin, Germany DA - 24.10.2022 KW - Laser Powder Bed Fusion KW - Thermography KW - In-situ Monitoring KW - Convolutional Neural Networks PY - 2022 AN - OPUS4-56332 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Oster, Simon A1 - Becker, Tina A1 - Breese, Philipp Peter A1 - Scheuschner, Nils A1 - Maierhofer, Christiane A1 - Ulbricht, Alexander A1 - Fritsch, Tobias A1 - Mohr, Gunther A1 - Altenburg, Simon T1 - Defect prediction on the Base of Thermographic features in Laser Powder Bed Fusion Utilizing Machine Learning Algorithms N2 - Avoiding the formation of defects such as keyhole pores is a major challenge for the production of metal parts by Laser Powder Bed Fusion (LPBF). The use of in-situ monitoring by thermographic cameras is a promising approach to detect defects, however the data is hard to analyze by conventional algorithms. Therefore, we investigate the use of Machine Learning (ML) in this study, as it is a suitable tool to model complex processes with many influencing factors. A ML model for defect prediction is created based on features extracted from process thermograms. The porosity information calculated from an x-ray Micro Computed Tomography (µCT) scan is used as reference. Physical characteristics of the keyhole pore formation are incorporated into the model to increase the prediction accuracy. Based on the prediction result, the quality of the input data is inferred and future demands on in-situ monitoring of LPBF processes are derived. T2 - Additive Manufacturing Benchmarks 2022 CY - Bethesda, MA, USA DA - 14.08.2022 KW - Laser Powder Bed Fusion KW - Thermography KW - In-situ Monitoring KW - Machine Learning KW - Defect prediction PY - 2022 AN - OPUS4-55591 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Oster, Simon A1 - Becker, Tina A1 - Breese, Philipp Peter A1 - Scheuschner, Nils A1 - Maierhofer, Christiane A1 - Ulbricht, Alexander A1 - Frisch, Tobias A1 - Mohr, Gunther A1 - Altenburg, Simon T1 - Defect prediction in laser powder bed fusion based on thermographic features utilizing convolutional neural networks N2 - The appearance of irregularities such as keyhole porosity is a major challenge for the production of metal parts by laser powder bed fusion (PBF-LB/M). The utilization of thermographic in-situ monitoring is a promising approach to extract the thermal history which is closely related to the formation of irregularities. In this study, we investigate the utilization of convolutional neural networks to predict keyhole porosity based on thermographic features. Here, the porosity information calculated from an x-ray micro computed tomography scan is used as reference. Feature engineering is performed to enable the model to learn the complex physical characteristics of the porosity formation. The model is examined with regard to the choice of hyperparameters, the significance of thermal features and characteristics of the data acquisition. Based on the results, future demands on irregularity prediction in PBF-LB/M are derived. T2 - GIMC SIMAI YOUNG 2022 CY - Pavia, Italy DA - 29.09.2022 KW - Laser Powder Bed Fusion KW - Thermography KW - In-situ Monitoring KW - Convolutional Neural Networks PY - 2022 AN - OPUS4-56331 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Oster, Simon A1 - Altenburg, Simon T1 - Multispectral in-situ monitoring of a L-PBF manufacturing process using three thermographic camera systems N2 - The manufacturing of metal parts for the use in safety-relevant applications by Laser Powder Bed Fusion (L-PBF) demands a quality assurance of both part and process. Thermography is a nondestructive testing method that allows the in-situ determination of the thermal history of the produced part which is connected to the mechanical properties and the formation of defects [1]. A wide range of commercial thermographic camera systems working in different spectral ranges is available on the market. The understanding of the applicability of these cameras for qualitative and quantitative in-situ measurements in L-PBF is of vital importance [2]. In this study, the building process of a cylindrical specimen (Inconel 718) is monitored by three camera systems simultaniously. These camera systems are sensitive in various spectral bandwidths providing information in different temperature ranges. The performance of each camera system is explored in the context of the extraction of image features for the detection of defects. It is shown that the high temporal and thermal process dynamics are limiting factors on this matter. The combination of different spectral camera systems promises the potential of an improved defect detection by data fusion. T2 - LASER SYMPOSIUM & ISAM 2021 CY - Online meeting DA - 07.12.2021 KW - Laser Powder Bed Fusion KW - Thermography KW - In-situ Monitoring KW - Defect detection PY - 2021 AN - OPUS4-54141 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Oster, Simon A1 - Mann, S. A1 - Sharma, R. A1 - Reisgen, U. T1 - In-situ Identifikation der Schweißnahtgeometrie bei der Anwendung von MSG-Schweißprozessen N2 - Lichtbogenbasierte Schweißverfahren wie das Metallschutzgasschweißen (MSG) zählen zu den Standardverfahren der Fügetechnik und werden in vielen Industriebereichen automatisiert unter Verwendung von Industrierobotern eingesetzt. Dabei können Schweißnahtabweichungen auftreten, die aus Änderungen der Prozessrandbedingungen und der hohen Prozessdynamik resultieren. Hier ist die Kontrolle von Schmelzbad- und Schweißnahtgeometrie für die Sicherung der Nahtqualität bedeutsam. Durch den Einsatz optischer Sensorsysteme können mit hoher zeitlicher Auflösung in-situ Informationen des Prozesszustands ermittelt werden. Dabei stellen die rauen Prozessbedingungen und die hohe Strahlungsintensität des Lichtbogens eine Herausforderung für die optischen Komponenten dar. Forschungsarbeiten am Institut für Schweißtechnik und Fügetechnik der RWTH Aachen haben gezeigt, dass durch den Einsatz einer HDR-Kamera in Kombination mit einer strukturierten Laserbelichtung gezielt geometrische Informationen des Lichtbogens und des Schmelzbads aus den Prozessaufnahmen gewonnen werden können. In dieser Arbeit wird eine parallele Schweißnaht- und Schmelzbadbeobachtung durchgeführt, wobei geometrische Informationen durch die Anwendung von Bildverarbeitungsalgorithmen extrahiert werden. Dabei wird ein nachlaufendes Sensorsystem eingesetzt, welches aus einer HDR-Kamera und einer Laserbeleuchtung besteht. Es werden diffraktive optische Elemente (DOE) zur Erzeugung von verschiedenen Laserprojektionsmustern verwendet, um sowohl eine unidirektionale als auch eine multidirektionale Prozessbeobachtung durchführen zu können. Aus den geometrischen Informationen werden Kenngrößen berechnet, anhand derer der Prozesszustand beurteilt werden kann. Es zeigt sich, dass anhand der Kenngrößenverläufe Abweichungen in der Schweiß- und Schmelzbadgeometrie und Positionierungsfehler des Roboters identifiziert werden können. T2 - Große Schweißtechnische Tagung - DVS CAMPUS CY - Online meeting DA - 14.09.2020 KW - Schweißnahtgeometrie KW - MSG-Schweißen KW - In-situ Monitoring KW - Schmelzbadbeobachtung PY - 2020 SN - 978-3-96144-098-6 VL - 365 SP - 41 EP - 47 PB - DVS Media GmbH CY - Düsseldorf AN - OPUS4-51576 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -