TY - JOUR A1 - Oster, Simon A1 - Breese, Philipp Peter A1 - Ulbricht, Alexander A1 - Mohr, Gunther A1 - Altenburg, Simon T1 - A deep learning framework for defect prediction based on thermographic in-situmonitoring in laser powder bed fusion N2 - The prediction of porosity is a crucial task for metal based additive manufacturing techniques such as laser powder bed fusion. Short wave infrared thermography as an in-situ monitoring tool enables the measurement of the surface radiosity during the laser exposure. Based on the thermogram data, the thermal history of the component can be reconstructed which is closely related to the resulting mechanical properties and to the formation of porosity in the part. In this study, we present a novel framework for the local prediction of porosity based on extracted features from thermogram data. The framework consists of a data pre-processing workflow and a supervised deep learning classifier architecture. The data pre-processing workflow generates samples from thermogram feature data by including feature information from multiple subsequent layers. Thereby, the prediction of the occurrence of complex process phenomena such as keyhole pores is enabled. A custom convolutional neural network model is used for classification. Themodel is trained and tested on a dataset from thermographic in-situ monitoring of the manufacturing of an AISI 316L stainless steel test component. The impact of the pre-processing parameters and the local void distribution on the classification performance is studied in detail. The presented model achieves an accuracy of 0.96 and an f1-Score of 0.86 for predicting keyhole porosity in small sub-volumes with a dimension of (700 × 700 × 50) μm3. Furthermore, we show that pre-processing parameters such as the porosity threshold for sample labeling and the number of included subsequent layers are influential for the model performance. Moreover, the model prediction is shown to be sensitive to local porosity changes although it is trained on binary labeled data that disregards the actual sample porosity. KW - Laser Powder Bed Fusion (PBF-LB/M, L-PBF) KW - Selective Laser Melting (SLM) KW - SWIR thermography KW - Online monitoring KW - Flaw detection KW - Machine learning KW - Convolutional neural networks (CNN) PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-575148 SN - 0956-5515 SP - 1 EP - 20 PB - Springer AN - OPUS4-57514 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -