TY - CONF A1 - Greiser, Sebastian A1 - Sturm, Patrick A1 - Gluth, Gregor A1 - Hunger, M. A1 - Jäger, Christian T1 - 29Si-27Al NMR to verify and distinguish Qn(mAl) sites in zeolites and geopolymers N2 - One-part-geopolymers, produced by addition of water to a mixture of solid silica and sodium alumi-nate, are a less exhaustively studied approach to form geopolymeric binders. Depending on the silica source, the reaction products show significant amounts of zeolite Na-A besides amorphous compounds. Previously, 29Si MAS NMR has been used to analyze the chemical structure of such one-part geopolymers, having crystalline structures and amorphous phases (Q2, Q3, Q4). In this work, pure zeolites and three different one-part-geopolymers cured for 1 day were investigated by 29Si-27Al TRAPDOR NMR. It was used to identify aluminum phases in overlapping silicon sites. Zeolites Na-X (Si/Al=1.4) and Na-Y (Si/Al=2.7) served as model systems to measure the TRAPDOR effect of the structural units Q4(mAl). Both materials show several Q4(mAl) signals, which are all separated by their chemical shifts. The more aluminum surrounds the silicon tetrahedron the higher are the normalized TRAPDOR difference signals (S0/∆S). The intensity ratios between Q4(mAl) to Q4({m-1}Al) of these signals is fixed but vary slightly between both zeolites. These results are transferred to the complex geopolymer structure. T2 - 57th Experimental nuclear magnetic resonance conference CY - Pittsburgh, PA, USA DA - 10.04.2016 KW - NMR KW - 29Si-27Al TRAPDOR MAS KW - Geopolymer KW - One-part formulation KW - Rice husk ash PY - 2016 AN - OPUS4-35864 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -