TY - JOUR A1 - Meng, M. A1 - Zhang, R. A1 - Fa, X. A1 - Yang, J. A1 - Cheng, Z. A1 - Ansari, A. A. A1 - Ou, Jun A1 - Würth, Christian A1 - Resch-Genger, Ute T1 - Preparation of core–shell structured NaYF4:Yb3+/ Tm3+@NaYF4:Yb3+/Er3+ nanoparticles with high sensitivity, low resolution and good reliability and application of their fluorescence temperature properties JF - Royal Society of Chemistry N2 - A series of NaYF4:Yb3+/Tm3+@NaYF4:Yb3+/Er3+ nanoparticles doped with Tm3+ and Er3+ were successfully prepared by the solvothermal method. Under 980 nm laser excitation, intense upconversion emission peaks of Tm3+ and Er3+ were observed for all samples. By doping Tm3+ and Er3+ with core–shell partitioning, not only a significant increase in fluorescence intensity could be achieved, but also simultaneous temperature measurements on multiple thermocouple energy levels could be realised. In addition, the temperature sensing performance of different thermocouple energy levels was also investigated, and it was found that the 3 F3 → 3 H6 and 1 G4 → 3 F4 thermocouple energy level pairs of Tm3+ were the best, with maximum absolute sensitivity and maximum relative sensitivity of up to 0.0250 K−1 and 2.155% K−1 respectively, higher than the sensitivity of other thermocouple energy levels. It has a temperature resolution of less than 0.0139 K, which is lower than that of most materials available today. By using this material as a probe to build a fiber optic temperature sensor platform, it was found to have reliable temperature measurement performance. KW - Flourescence KW - Optical probe KW - Sensor KW - Dye KW - Temperature KW - Nano KW - Particle KW - Upconversion KW - Lanthanide KW - Qantum yield KW - Quality assurance KW - Monitoring KW - Infrastructure PY - 2022 DO - https://doi.org/10.1039/d1ce01729b VL - 24 IS - 9 SP - 1752 EP - 1763 PB - RSC Publishing AN - OPUS4-54416 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kunc, F. A1 - Nirmalananthan-Budau, Nithiya A1 - Rühle, Bastian A1 - Sung, Y. A1 - Johnston, L.J. A1 - Resch-Genger, Ute T1 - Interlaboratory Comparison on the Quantification of Total and Accessible Amine Groups on Silica Nanoparticles with qNMR and Optical Assays JF - Analytical chemistry N2 - Risk assessment of nanomaterials requires not only standardized toxicity studies but also validated methods for nanomaterial surface characterization with known uncertainties. In this context, a first bilateral interlaboratory comparison on Surface group quantification of nanomaterials is presented that assesses different reporter-free and labeling methods for the quantification of the total and accessible number of amine functionalities on commercially available silica nanoparticles that are widely used in the life sciences. The overall goal of this comparison is the identification of optimum methods as well as achievable measurement uncertainties and the comparability of the results across laboratories. We also examined the robustness and ease of implementation of the applied analytical methods and discussed method-inherent limitations. In summary, this comparison presents a first step toward the eventually required standardization of methods for surface group quantification. KW - Nano KW - Nanomaterial KW - Surface KW - Method KW - QNMR KW - Quantification KW - Comparison KW - Quality assurance KW - Optical probe KW - Sensor KW - Interlabority comparison KW - Standardization KW - Optical assay KW - Functional group analysis KW - Silica KW - Particle KW - Safety KW - Environment PY - 2021 DO - https://doi.org/10.1021/acs.analchem.1c02162 SN - 1520-6882 VL - 93 IS - 46 SP - 15271 EP - 15278 PB - ASC Publications AN - OPUS4-53818 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Daly, H.C A1 - Matikonda, S.S A1 - Steffens, H.C A1 - Rühle, Bastian A1 - Resch-Genger, Ute A1 - Ivanic, J. A1 - Schermann, M.J T1 - Daly_Photochem Photobiol 2021_Ketone Incorporation Extends the Emission Properties of the Xanthene Scaffold JF - Photochemistry and Photobiology N2 - Imaging in the shortwave-infrared region (SWIR, λ = 1000–2500 nm) has the potential to enable deep tissue imaging with high resolution. Critical to the development of these Methods is the identification of low molecular weight, biologically compatible fluorescent probes that emit beyond 1000 nm. Exchanging the bridging oxygen atom on the xanthene scaffold (C10’ position) with electron withdrawing groups has been shown to lead to significant redshifts in absorbance and emission. Guided by quantum chemistry computational modeling studies, we investigated the installation of a Ketone bridge at the C10’ position. This simple modification extends the absorbance maxima to 860 nm and the emission beyond 1000 nm, albeit with reduced photon output. Overall, These studies demonstrate that broadly applied xanthene dyes can be extended into the SWIR range. KW - Flourescence KW - Optical probe KW - Dye KW - Photophysics KW - Quantum yield KW - Mechanism KW - NIR KW - SWIR KW - Imaging KW - Reliability KW - Method KW - Quality assurance PY - 2021 DO - https://doi.org/10.1111/php.13544 SN - 1751-1097 VL - 98 IS - 2 SP - 325 EP - 333 PB - Wiley Online Library AN - OPUS4-54080 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Witte, F. A1 - Rietsch, P. A1 - Nirmalananthan-Budau, Nithiya A1 - Weigert, Florian A1 - Götze, J. P. A1 - Resch-Genger, Ute A1 - Eigler, S. A1 - Paulus, B. T1 - Aggregation-induced emission leading to two distinct emissive species in the solid-state structure of high-dipole organic chromophores JF - Physical chemistry chemical physics: PCCP N2 - The concept of aggregation-induced emission represents a means to rationalise photoluminescence of usually nonfluorescent excimers in solid-state materials. In this publication, we study the photophysical properties of selected diaminodicyanoquinone (DADQ) derivatives in the solid state using a combined approach of experiment and theory. DADQs are a class of high-dipole organic chromophores promising for applications in non-linear optics and light-harvesting devices. Among the compounds investigated, we find both aggregation-induced emission and aggregation-caused quenching effects rationalised by calculated energy transfer rates. Analysis of fluorescence spectra and lifetime measurements provide the interesting result that (at least) two emissive species seem to contribute to the photophysical properties of DADQs. The main emission peak is notably broadened in the long-wavelength limit and exhibits a blue-shifted shoulder. We employ high-level quantum-chemical methods to validate a molecular approach to a solid-state problem and show that the complex emission features of DADQs can be attributed to a combination of H-type aggregates, monomers, and crystal structure defects. KW - Fluorescence KW - Optical probe KW - Dye KW - Photophysics KW - Theory KW - Quantum yield KW - Mechanism KW - Quantum chemistry KW - Modelling KW - Aggregation KW - Lifetime KW - Single particle KW - Microscopy KW - Solid KW - Crystal PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-531138 DO - https://doi.org/10.1039/d1cp02534a SP - 1 EP - 9 PB - Royal Society of Chemistry AN - OPUS4-53113 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauli, Jutta A1 - Würth, Christian A1 - Güttler, Arne A1 - Resch-Genger, Ute T1 - Reliable Determination of the Signal-Relevant Spectroscopic Key Characteristics of Luminescent Reporters and Optical Probes for Imaging in the vis/NIR/SWIR N2 - Introduction. Comparing different emitter classes and rationally designing the next generation of molecular and nanoscale probes for bioimaging applications require accurate and quantitative methods for the measurement of the key parameter photoluminescence quantum yield f.1 f equals the number of emitted per number of absorbed photons. This is particularly relevant for increasingly used fluorescence imaging in the short wave-infrared region (SWIR) ≥ 900 nm providing deeper penetration depths, a better image resolution, and an improved signal-to-noise or tumor-to-background ratio.2, 3 However, spectroscopic measurements in the SWIR are more challenging and require specific calibrations and standards. T2 - EMIM 2021 CY - Göttingen, Germany DA - 24.08.2021 KW - Fluorescence KW - Optical probe KW - Dye KW - Photophysics KW - Quantum yield KW - Mechanism KW - NIR KW - SWIR KW - Imaging KW - Reference material KW - Reliability KW - Nano KW - Particle KW - Method KW - Quality assurance PY - 2021 AN - OPUS4-53233 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Würth, Christian A1 - Kaiser, Michael A1 - Moser, Marko A1 - Nirmalananthan-Budau, Nithiya A1 - Behnke, Thomas A1 - Pauli, Jutta A1 - Weigert, Florian T1 - Quantitative Characterization of Functional Nanomaterials with vis/NIR Emission N2 - The rational design of functional nanomaterials for optical applications in the material and life sciences requires optical-spectroscopic methods for the quantitative characterization of their signal-relevant optical properties. Additionally, methods for the simple and quantitative analysis of the surface chemistry are desired as the chemical nature and number of the surface groups and ligands can affect the optical features and controls the interaction of these nanomaterials with their environment. Here, we present quantitative photoluminescenvce studies of different types of vis/NIR-emissive nanomaterials like semiconductor quantum dots and upconversion nanocrystals will be presented and their relevance for the mechanistic understanding of nonradiative decay channels and the rational design of new nanomaterials will be underpinned. In this respect, also validation concepts for such measurements and absolute fluorometry will be introduced. In addition, the potential of optical spectroscopy for surface group and ligand analysis surface chemistry will be demonstrated exemplarily for semiconductor quantum dots T2 - AK Prof. Voss CY - Uni Brunswick, Germany DA - 03.08.2017 KW - Semiconductor KW - Upconversion KW - Nanoparticle KW - Fluorescence KW - Surface group analysis KW - NIR KW - Absolute fluoreometry KW - Integrating sphare spectroscopy KW - Optical probe KW - Assay KW - Thiol ligand PY - 2017 N1 - Geburtsname von Nirmalananthan-Budau, Nithiya: Nirmalananthan, N. - Birth name of Nirmalananthan-Budau, Nithiya: Nirmalananthan, N. AN - OPUS4-41366 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Wegner, Karl David A1 - Kalot, G. A1 - Busser, B. A1 - Pliquett, J. A1 - Köster, U. A1 - Koll, J. C. A1 - Denat, F. A1 - Bodio, E. A1 - Goze, C. A1 - Sacey, L. T1 - NIR aza-BODIPY: a new vector for boron neutron capture therapy (BNCT) N2 - Boron neutron capture therapy (BNCT) relies on the activation of 10B by thermal neutrons, which results in small highly energetic particle emission inducing cancer cells damage. However, in order to overcome the limits of the currently used BNCT agents, it is necessary to design new systems, which can specifically accumulate and deliver a sufficient amount of 10B in tumors. In this study, we designed a 10B-BSH-containing aza-BODIPY (aza-SWIR-BSH). It enabled the efficient vectorization of clinically used 10B-BSH to the tumor, resulting in higher therapeutic activity than the 10B-BSH alone. T2 - EMIM 2021 CY - Göttingen, Germany DA - 24.08.2021 KW - Flourescence KW - Optical probe KW - Dye KW - Photophysics KW - Quantum yield KW - Mechanism KW - NIR KW - SWIR KW - Imaging KW - Method KW - Quality assurance KW - BODIPY KW - Boron Neutron Capture Therapy (BNCT) KW - Medicine KW - Life sciences PY - 2021 AN - OPUS4-53731 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -