TY - JOUR A1 - Drexler, A A1 - Konert, Florian A1 - Sobol, Oded A1 - Rhode, Michael A1 - Domitner, J A1 - Sommitsch, C A1 - Boellinghaus, Thomas T1 - Enhanced gaseous hydrogen solubility in ferritic and martensitic steels at low temperatures JF - International Journal of Hydrogen Energy N2 - Metals that are exposed to high pressure hydrogen gas may undergo detrimental failure by embrittlement. Understanding the mechanisms and driving forces of hydrogen absorption on the surface of metals is crucial for avoiding hydrogen embrittlement. In this study, the effect of stress-enhanced gaseous hydrogen uptake in bulk metals is investigated in detail. For that purpose, a generalized form of Sievert's law is derived from thermodynamic potentials considering the effect of microstructural trapping sites and multiaxial stresses. This new equation is parametrized and verified using experimental data for carbon steels, which were charged under gaseous hydrogen atmosphere at pressures up to 1000 bar. The role of microstructural trapping sites on the parameter identification is critically discussed. KW - Hydrogen KW - Thermodynamic modelling KW - Pressure-dependent solubility KW - Steel KW - Trapping PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-559307 DO - https://doi.org/10.1016/j.ijhydene.2022.09.109 SN - 0360-3199 VL - 47 IS - 93 SP - 39639 EP - 39653 PB - Elsevier Ltd. AN - OPUS4-55930 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nietzke, Jonathan A1 - Rhode, Michael A1 - Richter, Tim T1 - Hydrogen diffusion and desorption characteristics of a CoCrFeMnNi high entropy and a CoCrNi medium entropy alloy N2 - Future structural components made of the novel high-entropy (HEA) or medium-entropy alloys (MEA) components can be potentially exposed to hydrogen containing environments like high-temperature water in pressurized nuclear reactors or aerospace structures. Further applications are vessels wall materials for cryogenic or high-pressure hydrogen storage. So far, the susceptibility of HEA/MEAs to hydrogen assisted cracking (if any) and the hydrogen diffusion is not investigated in detail yet and can limit or extend possible applications of HEA/MEA as structural materials. In our work, we focused on the hydrogen absorption, diffusion, and distribution in a HEA (Co20Cr20Fe20Mn20Ni20, the original Cantor-alloy) and a MEA (Co33.3Cr33.3Ni33.3). Conventional cathodic hydrogen charging was carried out for the hydrogen ingress in the materials. Thermal desorption analysis (TDA) via carrier gas hot extraction with coupled mass spectrometry revealed complex hydrogen trapping in both alloy types up to 300 °C. The absorbed total hydrogen concentrations were ≥ 70 ppm for the HEA and approximately 40 ppm for the MEA-type. Although both materials have different chemical composition, the TDA spectra were comparable. In addition, it was shown that the consideration of the sample geometry is an important influence on the sample temperature. It decreases the effective applied heating rate, which must be anticipated for each hydrogen peak after deconvolution of the spectra. This increases the activation energy and shifts the peak to lower temperatures. As a result, microstructure effects can be separated from experimental boundary conditions like the concentration gradient due to the charging process and later thermal activation. T2 - 4th International Conference on Metals and Hydrogen - Steely & Hydrogen 2022 CY - Ghent, Belgium DA - 11.10.2022 KW - High-entropy alloy KW - Diffusion KW - Hydrogen KW - Thermal desorption analysis KW - Trapping PY - 2022 AN - OPUS4-56007 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Steppan, Enrico A1 - Mantzke, Philipp A1 - Kannengießer, Thomas T1 - Thermische Desorptionsanalyse in höherfesten Feinkornbaustählen N2 - Wasserstoff kann in Überlagerung mit Beanspruchungen zu einem unerwarteten Werkstoffversagen in höherfesten Stählen führen (wasserstoffunterstützte Schädigung von Metallen, starke Abnahme des Verformungsvermögens). Hierbei besteht in der Schweißtechnik die Gefahr einer wasserstoffunterstützten Kaltrissbildung. Der Fokus des Vortrags liegt auf das Wasserstoffbindungsverhalten (Trapping) im Grundwerkstoff und im schweißsimulierten Gefüge. Die Ergebnisse zeigen Unterschiede hinsichtlich der Bindungsenergie und des Fallencharakters. Anhand dieser lassen sich Rückschlüsse ziehen über eine effektive Wärmebehandlung zur Wasserstoffreduktion im Gefüge. Das Ziel ist eine Reduzierung des Risikos einer wasserstoffunterstützten Rissbildung. T2 - MDDK; Master-, Diplomanden- und Doktorandenkolloqium CY - Magdeburg, Germany DA - 23.06.2016 KW - Feinkornbaustahl KW - Wasserstoff KW - TDA KW - Trapping PY - 2016 AN - OPUS4-39449 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Steppan, Enrico A1 - Mantzke, Philipp A1 - Kannengießer, Thomas T1 - Eigenschaftsdegradation durch Wasserstoff in höherfesten Feinkornbaustählen N2 - Wasserstoff kann in Überlagerung mit Beanspruchungen zu einem unerwarteten Werkstoffversagen in höherfesten Stählen führen (wasserstoffunterstützte Schädigung von Metallen, starke Abnahme des Verformungsvermögens). In der Schweißtechnik besteht die Gefahr der wasserstoffunterstützten Kaltrissbildung. Die Aufnahme von Wasserstoff während des Schweißens lässt sich gänzlich nicht verhindern. Höherfeste Feinkornbaustähle um 700 MPa werden zunehmend mit unterschiedlichen Legierungskonzepten und Herstellungsrouten produziert. Diese Unterschiede erzeugen ein differentes Gefüge und Aussscheidungscharakteristik bei nominell ähnlichen Festigkeiten. Wichtige Vertreter sind der S690QL und der S700MC. Die Ergebnisse zeigen zum einen eine deutliche Abnahme der mechanisch-technologischen Gütewerte, zum anderen eine differente Degradation durch Wasserstoff. Signifikant ist die Abnahme der wahren Bruchdehnung bei bereits geringen Wasserstoffkonzentrationen unterhalb 4 ppm. Weiterhin wurde das Wasserstoffbindungsverhalten (Trapping) im Grundwerkstoff und im schweißsimulierten Gefüge untersucht. Die Ergebnisse zeigen Unterschiede hinsichtlich der Bindungsenergie und des Fallencharakters. Die Resultate belegen, dass eine Reduzierung des eingebrachten Wasserstoffs unabdingbar ist für einen sicheren Betrieb geschweißter Komponenten aus höherfestem Feinkornbaustahl. T2 - Forschungsseminar Institut für Werkstoff- und Fügetechnik CY - OvGU, Lehrstuhl Fügetechnik, Magdeburg, Germany DA - 10.01.2017 KW - Feinkornbaustahl KW - S690QL KW - S700MC KW - Wasserstoff KW - Degradation KW - TDA KW - Trapping PY - 2017 AN - OPUS4-39450 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -