TY - JOUR A1 - Ikeda, Yuki A1 - Yuan, R. A1 - Chakraborty, A. A1 - Ghassemi-Armaki, H. A1 - Zuo, J. M. A1 - Maaß, Robert T1 - Early stages of liquid-metal embrittlement in an advanced high-strength steel N2 - Grain-boundary degradation via liquid-metal embrittlement (LME) is a prominent and long-standing failure process in next generation advanced high-strength steels. Here we reveal, well ahead of the crack tip, the presences of nano-scale grains of intermetallic phases in Zn-infiltrated but uncracked grain boundaries with scanning- and 4D transmission electron microscopy. Instead of the often-reported Znrich Fe-Zn intermetallics, the nano-scale phase in the uncracked infiltrated grain boundaries is identified as the G-phase, and its presence reveals the local enhancement of strain heterogeneities in the grain boundary network. Based on these observations, we argue that intermetallic phase formation is not occurring after cracking and subsequent liquid Zn infiltration but is instead one of the primary nanoscopic drivers for grain-boundary weakening and crack initiation. These findings shift the focus of LME from micro- and meso-scale crack investigations to the very early stages immediately following Zn diffusion, after which secondary phase nucleation and growth emerge as the root-cause for failure. KW - Advanced high strength steels KW - Liquid metal embrittlement KW - Transmission electron microscopy KW - 4-Dimensional scanning transmission KW - electron microscopy PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-539716 SN - 2590-0498 VL - 13 IS - 196 SP - 1 EP - 8 PB - Elsevier Ltd. AN - OPUS4-53971 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Florian, Camilo A1 - Fischer, Daniel A1 - Freiberg, K. A1 - Duwe, M. A1 - Sahre, Mario A1 - Schneider, S. A1 - Hertwig, Andreas A1 - Krüger, Jörg A1 - Rettenmayr, M. A1 - Beck, Uwe A1 - Undisz, A. A1 - Bonse, Jörn T1 - Silicon surface amorphization and re-crystallization via single femtosecond laser pulses N2 - Silicon is the material responsible for most of the technological developments during the past century, making it one of the most studied materials along different disciplines. However, there are still unturned stones regarding its superficial re-solidification after femtosecond laser-induced local melting. In this presentation, we report irradiation experiments with single femtosecond pulses (790 nm, 30 fs) with a spatially Gaussian distribution on two different types of silicon with orientations <111> and <100>. The surface modifications were studied in detail via different techniques, including optical microscopy, atomic force microscopy, spectroscopic imaging ellipsometry, energy dispersive X-ray spectroscopy and high-resolution transmission electron microscopy. We quantitatively estimate the resulting radial amorphous layer depth profiles with maximum thicknesses around some tenths of nanometers for fluences in between the melting and ablation thresholds. In particular, spectroscopic imaging ellipsometry (SIE) allowed fast data acquisition using multiple wavelengths to provide experimental measurements for calculating the nanometric radial amorphous layer thickness profiles with micrometric lateral resolution based on a thin-film layer model. SIE proved to be capable of detecting and measuring nanometric structural and chemical modifications (oxidation) on the studied laser spots. The accuracy of the SIE-based calculations is verified experimentally by characterizing an in-depth material lamella via high-resolution transmission electron microscopy (HRTEM) and energy dispersive X-ray spectroscopy (STEM-EDX). For completeness, we present a mathematical modelling for the melt layer thickness considering different optical absorption processes including one photon absorption, two photon absorption and free-carrier absorption, highlighting the relevance of the latter one in the femtosecond laser-induced melting of silicon. T2 - 28th International Conference on Advanced Laser Technologies (ALT'21) CY - Online meeting DA - 06.09.2021 KW - Silicon KW - Femtosecond laser KW - Phase transitions KW - Spectroscopic imaging ellipsometry KW - Transmission electron microscopy PY - 2021 AN - OPUS4-53235 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abram, Sarah-Luise A1 - Mrkwitschka, Paul A1 - Prinz, Carsten A1 - Rühle, Bastian A1 - Haase, Oskar A1 - Kuchenbecker, Petra A1 - Löhmann, Oliver A1 - Hodoroaba, Vasile-Dan A1 - Bresch, Harald A1 - Resch-Genger, Ute T1 - Iron oxide nanoparticles as a reference material candidate for particle size measurements N2 - This poster presentation covers the development of iron oxide nanoparticles as reference material candidate in the context of the project "Nanoplattform". T2 - EMRS Spring Meeting CY - Online meeting DA - 31.05.2021 KW - Iron oxide nanoparticles KW - Reference material KW - Particle size KW - Transmission electron microscopy KW - Small angle x-ray scattering PY - 2021 AN - OPUS4-52773 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rockenhäuser, Christian A1 - Schriever, Sina A1 - Piesker, Benjamin A1 - Skrotzki, Birgit T1 - Microstructure evolution in aluminium alloy 2618 A during ageing and creep N2 - The Microstructure Evolution in Aluminium Alloy 2618 A during Ageing and Creep was presented and discussed. T2 - Microscopy & Microanalysis 2016 CY - Columbus, OH, USA DA - 24.07.2016 KW - Aluminium alloys KW - Coarsening KW - Transmission electron microscopy PY - 2016 AN - OPUS4-38268 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rockenhäuser, Christian A1 - Skrotzki, Birgit T1 - Quantitative dark-field transmission electron microscopy of the microstructure evolution in a 2618A aluminum alloy during ageing N2 - Quantitative Dark-Field Transmission Electron Microscopy of the Microstructure Evolution in a 2618A Aluminum Alloy During Ageing was presented and discussed. T2 - Microscopy & Microanalysis 2016 CY - Columbus, OH, USA DA - 24.07.2016 KW - Aluminium alloys KW - Coarsening KW - Transmission electron microscopy KW - Dark-field transmission electron miscoscopy KW - Material degradation PY - 2016 U6 - https://doi.org/10.1017/S1431927616007145 VL - 2016 SP - Paper 1260 AN - OPUS4-38279 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rockenhäuser, Christian A1 - Augenstein, E. A1 - Skrotzki, Birgit T1 - Long term ageing of alloy 2618A N2 - The result of an Investigation of the "Long term ageing of alloy 2618A" are discussed. T2 - International Conference on Aluminium Alloys 16 CY - Montreal, Canada DA - 17.06.2018 KW - Alloy 2818A KW - Aluminium KW - Coarsening KW - Transmission electron microscopy KW - S-phase PY - 2018 SP - Paper 400101 AN - OPUS4-45287 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rockenhäuser, Christian A1 - Augenstein, E. A1 - Skrotzki, Birgit T1 - Long term ageing of alloy 2618A N2 - Results of the in vestigation of the "Long term ageing of alloy 2618A" were presented. T2 - ICAA 16 CY - Montreal, Canada DA - 17.06.2018 KW - Alloy 2618A KW - Aluminium KW - Coarsening KW - Transmission electron microscopy KW - S-phase PY - 2018 AN - OPUS4-45288 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tasdemir, Z. A1 - Wollschläger, Nicole A1 - Österle, Werner A1 - Leblebici, Y. A1 - Alaca, B. E. T1 - A deep etching mechanism for trench-bridging silicon nanowires N2 - Introducing a single silicon nanowire with a known orientation and dimensions to a specific layout location constitutes a major challenge. The challenge becomes even more formidable, if one chooses to realize the task in a monolithic fashion with an extreme topography, a characteristic of microsystems. The need for such a monolithic integration is fueled by the recent surge in the use of silicon nanowires as functional building blocks in various electromechanical and optoelectronic applications. This challenge is addressed in this work by introducing a top-down, silicon-on-insulator technology. The technology provides a pathway for obtaining well-controlled silicon nanowires along with microstructures up to a three-order-of-magnitude scale difference. A two-step etching process is developed, where the first shallow etch defines a nanoscale protrusion on the wafer surface. After applying a conformal protection on the protrusion, a deep etch step is carried out forming the surrounding microscale features. A minimum nanowire cross-section of 35 nm by 168 nm is demonstrated in the presence of an etch depth of 10 m. All cross-sectional features are characterized via transmission electron microscopy and linked to specific process steps. The technology allows control on all dimensional aspects along with the exact location and orientation of the silicon nanowire. KW - Silicon nanowire KW - Deep reactive ion etching KW - Transmission electron microscopy PY - 2016 U6 - https://doi.org/10.1088/0957-4484/27/9/095303 SN - 0957-4484 SN - 1361-6528 VL - 27 IS - 9 SP - 095303-1 EP - 095303-8 PB - IOP Publishing AN - OPUS4-35789 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Häusler, Ines A1 - Dörfel, Ilona A1 - Peplinski, Burkhard A1 - Dietrich, Paul A1 - Unger, Wolfgang A1 - Österle, Werner T1 - Comprehensive characterization of ball-milled powders simulating a tribofilm system N2 - A model system was used to simulate the properties of tribofilms which form during automotive braking. The model system was prepared by ball milling of a blend of 70 vol.% iron oxides, 15 vol.% molybdenum disulfide and 15 vol.% graphite. The resulting mixture was characterized by X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and various transmission electron microscopic (TEM) methods, including energy dispersive X-ray spectroscopy (EDXS), high resolution investigations (HRTEM) with corresponding simulation of the HRTEM images, diffraction methods such as scanning nano-beam electron diffraction (SNBED) and selected area electron diffraction (SAED). It could be shown that the ball milling caused a reduction of the grain size of the initial components to the nanometer range. Sometimes even amorphization or partial break-down of the crystal structure was observed for MoS2 and graphite. Moreover, chemical reactions lead to a formation of surface coverings of the nanoparticles by amorphous material, molybdenum oxides, and iron sulfates as derived from XPS. KW - Tribofilm model system KW - Ball milling KW - X-ray powder diffraction KW - Transmission electron microscopy PY - 2016 U6 - https://doi.org/10.1016/j.matchar.2015.11.024 SN - 1044-5803 SN - 1873-4189 VL - 111 SP - 183 EP - 192 PB - Elsevier CY - New York, NY AN - OPUS4-35051 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Mast, J. A1 - Verleysen, E. A1 - Hodoroaba, Vasile-Dan A1 - Kaegi, R. ED - Hodoroaba, Vasile-Dan ED - Unger, Wolfgang ED - Shard, A. G. T1 - Characterization of nanomaterials by transmission electron microscopy - Measurement procedures N2 - In this chapter, approaches are proposed for the descriptive and quantitative characterization of nano-objects with nanometer resolution. Measurements are based on the analysis of the characteristics of 2D projections of individual particles visualized on transmission electron micrographs. Incorporation of spectroscopic methods (EDS and EELS) for elemental analysis of nano-objects is recommended to identify subpopulations of nano-objects in mixtures based on their chemical composition. The focus lies on the determination of physicochemical properties which are essential in a legislatory and regulatory context to define the material as a nanomaterial (NM), and to assess its safety and toxicological potential, using widely accessible equipment. KW - Nanoparticles KW - Sample preparation KW - Image analysis KW - Transmission electron microscopy PY - 2020 SN - 978-0-12-814182-3 U6 - https://doi.org/10.1016/B978-0-12-814182-3.00004-3 SP - 29 EP - 48 PB - Elsevier CY - Amsterdam AN - OPUS4-50121 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -