TY - CONF A1 - Agudo Jácome, Leonardo A1 - Mosquera Feijoo, Maria A1 - Nolze, Gert A1 - Rizzo, F. T1 - Nano-sized precipitates in an Fe-13Cr alloy formed under oxidizing water vapor atmosphere N2 - Oxidation of a Fe-13Cr alloy under water vapor at 600 °C produced a zone of nano-sized precipitation underneath the outside scale formed by iron oxides and Fe‒Cr spinel. The majority of the spinel layer shows a mixed orientation relationship to the ferritic matrix {100}α || {100}sp & <011>α || <001>sp. However, also the discovered precipitated particles are characterized by the same crystallographic orientation relationship to the respective ferritic parent grain. The habit of the precipitates is best described by a lath morphology with their main axis parallel to <100> of ferrite. Energy dispersive X-ray spectroscopy (EDX) and electron backscatter diffraction (EBSD) in an scanning electron microscope (SEM) have been applied to characterize the oxide layer in the micrometer scale. The clearly smaller precipitates were subsequently investigated by transmission electron microscopy (TEM). Specimens have been prepared by focused ion-beam (FIB) milling at an area previously characterized by EBSD. They cover the ferritic base material, but mainly the precipitation zone and the Fe‒Cr spinel layer. Energy filtered selected area diffraction (SAD) in the conventional (C)TEM and high-angle annular darkfield (HAADF) imaging in the scanning (S)TEM mode were employed in the characterization of the specimens. T2 - International Conference on Solid-Solid Phase Transformations in Inorganic Materials (PTM) 2015 CY - Whistler, British Columbia, Canada DA - 28.06.2015 KW - Precipitation KW - Oxidation KW - Microscopy KW - Topotactic transformation KW - Spinel PY - 2015 AN - OPUS4-42169 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rizzo, F. A1 - Agudo Jácome, Leonardo A1 - Mosquera Feijoo, Maria A1 - Nolze, Gert A1 - Kranzmann, Axel A1 - Costa e Silva, A. T1 - Evaluation of nano-sized internal oxidation in a Fe-13Cr alloy exposed to water vapor atmosphere N2 - The topotactic formation of nano-sized precipitates immediately under the internal oxide layer in a Fe-13Cr alloy exposed to oxidizing water vapor atmosphere was recently reported. The precipitates were identified as lath-shaped Fe-Cr spinel exhibiting a crystallographic orientation relationship with the ferritic matrix. The authors proposed that these precipitates could act as a precursor to the formation of the spinel layer observed in the adjacent part of the oxide scale.The occurrence of internal oxidation in Fe–Cr alloys subjected to similar conditions had been previously identified and directly correlated to the presence of water vapor. In the present work, we attempt to rationalize the processes occurring during the oxidation of this alloy through thermodynamic and kinetic analyses based on the CALPHAD approach, using the geometrical representation of phase equilibria and concepts developed to describe internal oxidation. The influence of water vapor on the mechanism and kinetics of formation of the nano-sized precipitates and its role in the overall oxidation process is also considered. T2 - CALPHAD XLV The forty-fifth International Conference on CALPHAD (Computer Coupling of Phase Diagrams and Thermochemistry) CY - Awaji Island, Hyogo, Japan DA - 29.05.2016 KW - Precipitation KW - Internal oxidation KW - CALPHAD KW - Topotactic transformation KW - Microscopy PY - 2016 AN - OPUS4-42156 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -