TY - GEN A1 - Niemz, P. A1 - Baensch, Franziska A1 - Brunner, A. J. ED - Pavalache-Ilie, M. ED - Curtu, A. L. T1 - Acoustic Emission Analysis And Synchrotron-based Microtomography of glued shear strength samples from spruce wood T2 - Bulletin of the Transilvania University of Braşov, Series II N2 - To better understanding the failure of adhesive joints tensile tests were carried out on miniature test specimens from Norway spruce in the synchrotron. Urea-formaldehyde resin was used as adhesive. e. For comparison purposes, tensile tests were carried out on solid wood and on bonded miniature tensile shear samples with acoustic emission. The acoustic emission signals of all the experiments occurred with classified pattern recognition. This resulted in two classes of signals for each two frequency peaks. One class consisted of the low-frequency and the other of the higher-frequency peak of higher intensity, but this was essentially independent from the structure (solid wood or plywood) and size scale of the test specimens. The influence of the adhesive layers was determined on wood test specimens on laboratory scale and on miniature test specimens with an adhesive layer and selected fiber orientations. This gave evidence that the sound emission signals from the failure of the adhesive layer presumably of the class with low frequency signals peak in the range of services can be assigned. KW - Wood KW - Bondline KW - In-situ test KW - Acoustic emission KW - Synchrotron tomography PY - 2020 DO - https://doi.org/10.31926/but.fwiafe.2020.13.62.1.7 VL - 13 IS - 62 Part 1 SP - 81 EP - 88 PB - Transilvania University Press, Brasov, Romania CY - Brasov AN - OPUS4-51010 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gollwitzer, Christian A1 - Scholz, Philipp A1 - Ulbricht, Alexander A1 - Joshi, Yogita A1 - Weidner, Steffen T1 - Synchrotron based absorption edge tomography for the analysis of 3D printed polymer MOF N2 - Absorption edge tomography is a method which exploits the sudden change of the attenuation coefficient, when the photon energy crosses the absorption edge of an element. The beamline BAM line at BESSY II, which is operated by the Federal Institute for Materials Research and Testing, can provide a monochromatized beam in a photon energy range from 5 keV up to 80 keV with a bandwidth of 2%. Together with the microtomography setup, this enables differential tomography sensitive to any element with N >= 24 (Cr) by using an appropriate K- or L-edge in this range. Here, a polymer filament embedding metal organic framework (MOF) was prepared and used for 3D printing. Absorption edge tomography at the copper K edge was employed to perform a non-destructive 3D characterization of the microstructure of the embedded MOF. Data fusion was then used to determine the size distribution of the embedded MOF. T2 - iCT 2019 CY - Padua, Italy DA - 12.02.2019 KW - Synchrotron tomography KW - BAMline KW - MOF KW - Absorption edge tomography PY - 2019 AN - OPUS4-47391 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gollwitzer, Christian A1 - Scholz, Philipp A1 - Ulbricht, Alexander A1 - Joshi, Yogita A1 - Weidner, Steffen T1 - Synchrotron based absorption edge tomography for the analysis of 3D printed polymer MOF N2 - Absorption edge tomography is a method which exploits the sudden change of the attenuation coefficient, when the photon energy crosses the absorption edge of an element. The beamline BAM line at BESSY II, which is operated by the Federal Institute for Materials Research and Testing, can provide a monochromatized beam in a photon energy range from 5 keV up to 80 keV with a bandwidth of 2%. Together with the microtomography setup, this enables differential tomography sensitive to any element with N >= 24 (Cr) by using an appropriate K- or L-edge in this range. Here, a polymer filament embedding metal organic framework (MOF) was prepared and used for 3D printing. Absorption edge tomography at the copper K edge was employed to perform a non-destructive 3D characterization of the microstructure of the embedded MOF. Data fusion was then used to determine the size distribution of the embedded MOF. T2 - iCT 2019 CY - Padua, Italy DA - 12.02.2019 KW - Synchrotron tomography KW - BAMline KW - MOF KW - Absorption edge tomography PY - 2019 AN - OPUS4-47392 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eddah, Mustapha A1 - Markötter, Henning A1 - Mieller, Björn A1 - Beckmann, Jörg A1 - Bruno, Giovanni T1 - Synchrotron Multi-energy HDR tomography for LTCC systems N2 - LTCCs (Low-temperature co-fired ceramics) consist of three-dimensionally distributed, hermetically bonded ceramic and metallic components with structure sizes within [10; 100] µm. A non-destructive imaging technique is needed that provides 3D, sharp, high-contrast resolution of these structures, as well as porosity and defect analysis, which is made difficult by the very different X-ray absorption coefficients of the individual components of the microstructure. A HDR method is being developed that allows a combination of different tomograms, each with X-ray energies adapted to individual materials. T2 - Bessy II User Meeting CY - Berlin, Germany DA - 22.06.2023 KW - LTCC KW - Synchrotron tomography KW - Data fusion KW - In-situ tomography PY - 2023 AN - OPUS4-57795 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Serrano Munoz, Itziar A1 - Shiozawa, D. A1 - Dancette, S. A1 - Lachambre, J. A1 - Verdu, C. A1 - Buffiere, J.-Y. T1 - Torsional crack propagation mechanisms of an A357-T6 cast aluminium alloy N2 - This poster is an example of what it can be achieved when performing in-situ fatigue testing synchrotron tomography T2 - Euromat 2019 CY - Stockholm, Sweden DA - 02.09.2019 KW - In situ testing KW - Synchrotron tomography KW - Torsional fatigue KW - Propagation modes PY - 2019 AN - OPUS4-48893 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -