TY - CONF A1 - Lengas, Nikolaos A1 - Müller, Karsten A1 - Schlick-Hasper, Eva A1 - Neitsch, Marcel A1 - Johann, Sergej A1 - Zehn, M. W. T1 - FEA of the mechanical response of installed impact target foundations in drop tests of dangerous goods packagings N2 - Packagings for the transport of dangerous goods need to meet special requirements to get an approval. This includes free fall drop testing onto an essentially unyielding surface as a means to assess a package’s resistance to mechanical damage. A main requirement for drop tests is that the impact target’s mass shall be at least 50 times that of the heaviest package to be tested. Nevertheless, many manufacturers do not possess foundation structures with the required mass ratio. Previous evidence highlights that the mass ratio is not a decisive criterion on its own. Parameters such as the impact target foundation’s connection and the impulse experienced by the impacting object are essential as well. However, these factors are not easily verifiable since experimental measurements are not possible at most facilities. The objective of this work is to provide a detailed analysis on the interaction between impact target foundation and subgrade in dynamic impact testing using validated finite-element (FE) models. This research is highly beneficial for industrial application since it allows manufacturers to make informed predictions about the mechanical response of installed impact target foundations. T2 - FEMS EUROMAT 2023 CY - Frankfurt a. M., Germany DA - 03.09.2012 KW - Dangerous goods packagings KW - Drop test KW - Foundation KW - Structural dynamics PY - 2023 AN - OPUS4-58213 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Lengas, Nikolaos T1 - Parameter study of impact targets in the drop test of packaging for dangerous goods N2 - Within the transportation chain, impact loading of dangerous goods packagings can happen. Thus, a package’s resistance against mechanical damage needs to be assessed. In the context of dangerous goods transport, drop tests are used for damage assessment as a part of packaging approval. Hence, a horizontal, flat unyielding surface must be provided to ensure maximum damage on impact and univocal test results. Leading adopted regulations like ADR/RID reference ISO 2248 to specify the requirements for the impact surface. The main requirement states that the impact surface must belong to an impact target with a mass at least 50 times higher than that of the heaviest package to be tested. However, many manufacturers in Germany, especially manufacturers of fibreboard boxes, do not have their own testing device with the required mass ratio for the drop test. Furthermore, the necessity of requirement revision has been addressed at UN level. It is unclear if mass ratio is the decisive criterion or if alternative design parameters can be defined to guarantee rigidity of the impact surface. The focus of the research reported in this thesis lays in the development and implementation of an analysis and testing concept for a comprehensive investigation of impact targets in drop testing. To this end, an experimental setup consisting of regulation compliant model impact targets is used in drop tests with two packaging types of significantly different mechanical properties. The variation of drop test parameters, such as the mass ratio, provides new insights into their respective significance in the drop test outcome. In addition, experimental findings are enhanced with numerical Finite-Element (FE) analyses to propose new improved criteria which incorporate all relevant influencing factors. In this way, firstly, critical impact target designs can be identified, and secondly, the kinetic energy of a real impact target in a drop test can be reliably approximated and compared to the respective theoretical threshold derived from a worst-case assumption. Thus, the rigid mass ratio currently specified in ISO 2248 can be regarded obsolete. The results of this work are highly beneficial for industrial application since they form the basis for introducing a standardized method for evaluating impact targets, replacing the 50 times mass ratio requirement. This would enable manufacturing and testing facilities to ensure a uniform level of safety assessment and to avoid the considerably high construction costs of impact targets with mass ratio of 1:50 in relation to packaging gross masses of several hundred kilograms. Hence, to make the results attained under laboratory conditions usable in practical application, preliminary investigations of the mechanical response of installed impact targets are conducted. For this purpose, important factors such as the interaction between impact target and ground in dynamic impact testing conditions are examined using validated FE models to establish an evaluation method. The investigations aim to create the basis for the revision of ISO 2248 and to define a standardized reference method for impact target characterization. KW - Drop test KW - Structural dynamics KW - Dangerous goods packaging KW - Mass ratio KW - Finite-element-method PY - 2025 DO - https://doi.org/10.14279/depositonce-24333 SP - 1 EP - 189 CY - Berlin AN - OPUS4-64090 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Aree, T. A1 - McMonagle, C. J. A1 - Michalchuk, Adam A1 - Chernyshov, D. T1 - Low-frequency lattice vibrations from atomic displacement parameters of a-FOX-7, a high energy density material N2 - Highly anharmonic thermal vibrations may serve as a source of structural instabilities resulting in phase transitions, chemical reactions and even the mechanical disintegration of a material. Ab initio calculations model thermal motion within a harmonic or sometimes quasi-harmonic approximation and must be complimented by experimental data on temperature-dependent vibrational frequencies. Here multi-temperature atomic displacement parameters (ADPs), derived from a single-crystal synchrotron diffraction experiment, are used to characterize low-frequency lattice vibrations in the alpha-FOX-7 layered structure. It is shown that despite the limited quality of the data, the extracted frequencies are reasonably close to those derived from inelastic scattering, Raman measurements and density functional theory (DFT) calculations. Vibrational anharmonicity is parameterized by the Grüneisen parameters, which are found to be very different for in-layer and out-of-layer vibrations. KW - Energetic Materials KW - DFT KW - Structural dynamics KW - X-ray diffraction PY - 2022 DO - https://doi.org/10.1107/S2052520622002700 SN - 2052-5206 VL - 78 SP - 376 EP - 384 PB - Wiley-Blackwell CY - Oxford AN - OPUS4-54832 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Das, A. A1 - Dufresne, E.M. A1 - Maaß, Robert T1 - Structural dynamics and rejuvenation during cryogenic cycling in a Zr-based metallic glass N2 - Subjecting metallic glasses repeatedly to liquid nitrogen temperature has become a popular method to homogeneously rejuvenate the material. Here we reveal the atomic-scale structural dynamics using in- situ x-ray photon correlation spectroscopy (XPCS) during and after cryogenic cycling of a Zr-based metallic glass in two structural states (plate and ribbon). Heterogeneous structural dynamics is observed at 300 K that changes to monotonic aging at 78 K. It is found that cryogenic cycling homogenizes the relaxation time distribution. This effect is much more pronounced in the ribbon, which is the only structural state that rejuvenates upon cycling. We furthermore reveal how fast atomic-scale dynamics is correlated with longtime structural relaxation times irrespective of the structural state, and that the ribbon exhibits unexpected additional fast atomic-scale relaxation in comparison to the plate material. A structural picture emerges that points towards heterogeneities in the fictive temperature as a requirement for cryogenic energy storage. KW - Structural dynamics KW - Metallic glass KW - Relaxation KW - Rejuvenation KW - Cryogenic cycling PY - 2020 DO - https://doi.org/10.1016/j.actamat.2020.06.063 SN - 1359-6454 VL - 196 SP - 723 EP - 732 PB - Elsevier Ltd. AN - OPUS4-51311 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -