TY - JOUR A1 - Almalla, A. A1 - Hertwig, Andreas A1 - Fischer, Daniel A1 - Özcan Sandikcioglu, Özlem A1 - Witt, Julia T1 - Development of layer-by-layer assembled thin coatings on aluminium alloy AA2024-T3 for high resolution studies of local corrosion processes N2 - The aim of this study is to develop nanometer-thin epoxy-based films on aluminium alloy AA2024-T3 as a model coating system for high resolution corrosion studies. Spin coating was used for the layer-by-layer (LbL) deposition of poly-(ethylenimine) (PEI) and poly([o-cresyl glycidyl ether]-co-formaldehyde) (CNER) bilayers. The film chemistry and the cross-linking process were characterized by means of Fourier-transform infrared spectroscopy (FTIR). Ellipsometric data confirmed the linear increase of film thickness. The potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) results indicate the improvement of the film barrier properties with increasing film thickness. Mapping of the topography and the volta potential was performed by means of scanning Kelvin probe force microscopy (SKPFM). The results indicate the presence of a homogeneous film structure, while the intermetallic phases can still be identified below the coating. The SKPFM Analysis confirmed that the model films are suitable for investigation of corrosion processes at the coating/metal interface. KW - Spectroscopy KW - Coatings KW - Electrochemistry KW - Microscopy KW - Resins PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-514627 SN - 0021-8995 VL - 137 IS - 48 SP - e49826-1 EP - e49826-9 PB - Wiley CY - New York, NY AN - OPUS4-51462 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chazeau, E. A1 - Fabre, C. A1 - Privat, M. A1 - Godard, A. A1 - Racoeur, C. A1 - Bodio, E. A1 - Busser, B. A1 - Wegner, Karl David A1 - Sancey, L. A1 - Paul, C. A1 - Goze, C. T1 - Comparison of the In Vitro and In Vivo Behavior of a Series of NIR-II-Emitting Aza-BODIPYs Containing Different Water-Solubilizing Groups and Their Trastuzumab Antibody Conjugates N2 - The development of new fluorescent organic probes effective in the NIR-II region is currently a fast-growing field and represents a challenge in the domain of medical imaging. In this study, we have designed and synthesized an innovative series of aza-boron dipyrromethenes emitting in the NIR-II region. We have investigated the effect of different water-solubilizing groups not only on the photophysical properties of the compounds but also on their in vitro and in vivo performance after bioconjugation to the antibody trastuzumab. Remarkably, we discovered that the most lipophilic compound unexpectedly displayed the most favorable in vivo properties after bioconjugation. This underlines the profound influence that the fluorophore functionalization approach can have on the efficiency of the resulting imaging agent. KW - NIR-II KW - In vivo imaging KW - Fluorescence KW - Spectroscopy KW - Antibody conjugates PY - 2024 U6 - https://doi.org/10.1021/acs.jmedchem.3c02139 SN - 1520-4804 VL - 67 IS - 5 SP - 3679 EP - 3691 PB - ACS Publications CY - Washington, DC AN - OPUS4-59607 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gers-Panther, C.F. A1 - Fischer, H. A1 - Nordmann, J. A1 - Seiler, T. A1 - Behnke, Thomas A1 - Würth, Christian A1 - Frank, W. A1 - Resch-Genger, Ute A1 - Müller, T.J.J. T1 - Four- and Five-Component Syntheses and Photophysical Properties of Emission Solvatochromic 3‑Aminovinylquinoxalines N2 - 3-Aminovinylquinoxalines are readily accessible from (hetero)aryl glyoxylic acids or heterocyclic π-nucleophiles by consecutive four- and fivecomponent syntheses in the sense of an activation-alkynylation-cyclocondensation-addition sequence or glyoxylation-alkynylation-cyclocondensation-addition sequence in good yields. The title compounds are highly fluorescent with pronounced emission solvatochromicity and protochromic fluorescence quenching. Time-resolved fluorescence spectroscopy furnishes radiative and nonradiative fluorescence decay rates in various solvent polarities. The electronic structure is corroborated by DFT and TD-DFT calculations rationalizing the observed spectroscopic effects. KW - Dye KW - Syntheseis KW - Spectroscopy PY - 2016 U6 - https://doi.org/10.1021/acs.joc.6b02581 SN - 0022-3263 VL - 82 SP - 567 EP - 578 PB - ACS Publications AN - OPUS4-39211 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Grauel, Bettina A1 - Würth, Christian A1 - Resch-Genger, Ute A1 - Haase, M. A1 - Homann, C. T1 - Progress report NaYF4:Yb,Er upconversion nanoparticles: determination of energy loss processes for the systematic enhancement of the luminescence efficiency N2 - A report on the progress of the PhD work on upconversion nanoparticles is given, showing lifetimes and quantum yields of single- and co-doped Yb,Er nanocrystals with and without inert shell. T2 - Arbeitsgruppenseminar Prof. Oliver Benson CY - Berlin, Germany DA - 23.10.2019 KW - Upconversion KW - Spectroscopy KW - Nanoparticles KW - Lifetime PY - 2019 AN - OPUS4-49754 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nehring, Grzegorz A1 - Hahn, Oliver A1 - Shevchuk, Ivan A1 - Huskin, Kyle A1 - Cohen, Zina A1 - Rabin, Ira T1 - Breaking the limits of the non-destructive instrumental analysis of writing inks N2 - The ink analysis protocol developed through cooperation between the Bundesanstalt für Materialforschung und -prüfung in Berlin and the Centre for the Study of Manuscript Cultures at the University of Hamburg involves the use of imaging techniques for ink screening, followed by spectroscopic analysis. In our presentation, we will begin by briefly reviewing the history of writing inks and discussing the three main categories: carbon-based inks, plant, and iron-gall inks. We will address their chronology, precursors, and mixed forms, as well as the features that allow for their identification. Then, we will present the techniques we use in ink analysis, whereby we would like to highlight the limitations, advantages, and disadvantages of each approach. Finally, we will discuss the new mass-spectrometric method based on micro-sampling and using atmospheric solid analysis probe (ASAP). T2 - Future of the Past CY - Torun, Poland DA - 14.06.2023 KW - Ink analyses KW - Spectroscopy KW - Mass spectroscopy PY - 2023 AN - OPUS4-58882 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ren, J. A1 - Weigert, Florian A1 - Weber, F. A1 - Wang, Y. A1 - Choudhury, S. A1 - Xiao, J. A1 - Lauermann, I. A1 - Resch-Genger, Ute A1 - Bande, A. A1 - Petit, T. ED - Petit, Tristan T1 - Influence of surface chemistry on optical, chemical and electronic properties of blue luminescent carbon dots N2 - Carbon dots have attracted much attention due to their unique optical, chemical and electronic properties enabling a wide range of applications. The properties of carbon dots can be effectively adjusted through modifying their chemical composition. However, a major challenge remains in understanding the core and surface contributions to optical and electronic transitions. Here, three blue luminescent carbon dots with carboxyl, amino and hydroxyl groups were comprehensively characterized by UV-vis absorption and emission spectroscopy, synchrotron-based X-ray spectroscopy, and infrared spectroscopy. The influence of the surface functionality on their fluorescence was probed by pH-dependent photoluminescence measurements. Moreover, the hydrogen bonding interactions between water and the surface groups of carbon dots were characterized by infrared spectroscopy. Our results show that both core and surface electronic states of blue luminescent carbon dots contribute to electronic acceptor levels while the chemical nature of the surface groups determines the hydrogen bonding behavior of the carbon dots. This comprehensive spectroscopic study demonstrates that the surface chemistry has a profound influence on the electronic configuration and surface–water interaction of carbon dots, thus affecting their photoluminescence properties. KW - Quantum dots KW - Spectroscopy KW - UV Vis KW - Fluorescence KW - Surface chemistry PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-472325 SN - 2040-3372 VL - 11 IS - 4 SP - 2056 EP - 2064 PB - RSC AN - OPUS4-47232 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Stephan-Scherb, Christiane ED - Schorr, S. ED - Weidenthaler, C. T1 - Crystallographic challenges in corrosion research N2 - High-temperature corrosion is a widespread problem in various industries. As soon as a hot and reactive gas (CO2, O2, H2O, SO2, NOx, etc.) is in contact with a solid, physico-chemical processes at the surface and interfaces lead to material degradation. The processes are dynamic and controlled by thermodynamic and kinetic boundary conditions. Whether a reaction product is protective or not depends on various factors, such as chemical composition of the solid and the reactive media, surface treatment as well as diffusion and transport paths of cations and anions. Resulting chemical and structural inhomogeneities with the corrosion layers are characterized by off stoichiometry within cationic and anionic sub lattices. The competitive processes can be studied by various techniques of applied crystallography. This chapter gives an overview on the challenges of chemical-structural Analysis of reaction products by crystallographic methods such as X-ray diffraction and X-ray near-edge structure spectroscopy and scanning electron microscopy electron backscatter diffraction (SEM-EBSD) for corrosion science. KW - High-temperature corrosion KW - Oxidation KW - Diffraction KW - Spectroscopy KW - Oxides PY - 2021 U6 - https://doi.org/10.1515/9783110674910-009 SP - 291 PB - De Gruyter ET - 1 AN - OPUS4-52903 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stephan-Scherb, Christiane T1 - Unravelling high temperature oxidation phenomena by in situ x-ray techniques N2 - Unravelling high temperature oxidation phenomena by in situ x-ray techniques. A multi techqnique approach to study high temperature gas corrosion is presented. T2 - Gordon Research Conference on High Temperature Corrosion CY - New London, NH, USA DA - 20.07.2019 KW - Corrosion KW - High temperature KW - Diffraction KW - Spectroscopy PY - 2019 AN - OPUS4-48772 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stephan-Scherb, Christiane T1 - Novel insights into high temperature corrosion phenomena by advanced X-ray methods N2 - A variety of materials of technological interest change their properties through contact with reactive media. Solid-gas reactions lead to a variety of reaction products on the surfaces and internal interfaces. The observation of nucleation and growth processes in the environment where they occur (in situ) from a chemical-structural perspective is especially challenging for aggressive atmospheres. The talk presents innovative approaches to study corrosion mechanisms using advanced X-ray methods. Using energy dispersive X-ray diffraction and X-ray absorption spectroscopy in different tailor made environmental reaction chambers, valuable insights into high temperature oxidation and sulfidation processes were gained. Fe-based alloys were exposed to hot and reactive atmospheres containing gases like SO2, H2O and O2 at 650°C. During the gas exposure the tailor made reaction chambers were connected to a high energy diffraction end station at the synchrotron. The crystallization and growth of oxide and sulfide reaction products at the alloy surfaces were monitored by collecting full diffraction pattern every minute. Careful examination of shape and intensity of phase-specific reflections enabled to a detailed view on growth kinetics. These studies showed, oxides are the first phases occurring immediately after experimental start. As soon as reactive gas media enter the chamber, the conditions change and different reaction products, such as sulfides start to grow. A comparison of different gas environments applied, illustrated the differences in the type of reaction products. The in situ observation of high temperature material degradation by corrosion made it possible to study the contribution of phases, which are not stable at room temperature. For instance, wuestite (Fe1-xO), was frequently observed at high temperatures in humid gases on Fe with 2 wt.% and 9 wt.% chromium, but not at room temperature. The strength of the occurrence of this phase additionally explains why, despite a higher Cr content, ferritic alloys with 9 wt.% Cr in a challenging atmosphere prevent the intrinsic formation of protective layers. The in situ observations were supplemented by careful considerations of thermodynamic boundary conditions and detailed post characterization by classical metallographic analysis. Additionally, the structure and chemistry of the dominant oxide layers were evaluated using X-ray absorption near edge structure spectroscopy. The talk will give an overview about chances and challenges for studying high temperature corrosion phenomena by advanced X-ray methods. T2 - MRS Spring Meeting CT08.02.01 CY - Online Meeting DA - 18.04.2021 KW - XRD KW - Spectroscopy KW - Corrosion KW - High temperature KW - In-situ PY - 2021 AN - OPUS4-52486 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Waniek, Tassilo A1 - Braun, U. A1 - Silbernagl, Dorothee A1 - Sturm, Heinz T1 - The impact of water released from boehmite nanoparticles during curing in epoxy-based nanocomposites N2 - The enhancing effect on mechanical properties of boehmite (γ-AlOOH) nanoparticles (BNP) in epoxy-based nanocomposites on the macroscopic scale encouraged recent research to investigate the micro- and nanoscopic properties. Several studies presented different aspects relatable to an alteration of the epoxy polymer network formation by the BNP with need for further experiments to identify the mode of action. With FTIR-spectroscopic methods this study identifies interactions of the BNP with the epoxy polymer matrix during the curing process as well as in the cured nanocomposite. The data reveals that not the BNP themselves, but the water released from them strongly influences the curing process by hydrolysis of the anhydride hardener or protonation of the amine accelerator. The changes of the curing processes are discussed in detail. The changes of the curing processes enable new explanation for the changed material properties by BNP discussed in recent research like a lowered glass transition temperature region (Tg) and an interphase formation. KW - Spectroscopy KW - Aluminium oxide hydroxide KW - Glass transition temperature KW - Material chemistry KW - Nanocomposites KW - Structure-property relationship PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-527202 VL - 138 IS - 39 SP - 51006 PB - Wiley Periodicals LLC CY - Hoboken AN - OPUS4-52720 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -