TY - JOUR A1 - Geburtig, Anja A1 - Wachtendorf, Volker A1 - Trubiroha, P. T1 - Exposure response function for a quantitative prediction of weathering caused aging of polyethylene N2 - The exposure response function of the carbonyl formation over the bulk has been determined for a high-density polyethylene of a thickness of 200 μm, which was used as a weathering reference material according to ISO TR 19032. To this end, spectral sensitivity was studied by local measurement of the effect of spectrally dispersed irradiation. Both the exposure device and the methodology of determination are described. The temperature dependency of photooxidation was determined by UV exposure at various temperatures between 23 and 80 °C. Deviations from linearity and thus reciprocity below 40 °C are discussed and assumed to be related to diffusion limitations. An Arrhenius approach –based on data of linear carbonyl formation – has been incorporated into the exposure response function. Using this exposure response function, aging in terms of the distribution of a quantitative property change over a plastic component can be predicted for a specific outdoor location with real chronologic weather data as input for the exposure. Thus, artificial and natural weathering can be linked and compared. The established exposure response function has been validated by outdoor exposure results from the literature. If an estimated diffusion limitation is taken into consideration, calculations and published data are in good agreement. KW - Irradiation KW - Weathering KW - Spectral sensitivity KW - Temperature dependency KW - Spectral irradiation PY - 2019 U6 - https://doi.org/10.3139/120.111348 SN - 0025-5300 VL - 61 IS - 6 SP - 517 EP - 526 PB - Carl Hanser Verlag GmbH & Co. KG AN - OPUS4-48295 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Geburtig, Anja A1 - Wachtendorf, Volker A1 - Trubiroha, P. T1 - Discussion on Weathering Reference Materials N2 - Weathering reference materials (WRMs) are used to characterize the harshness of an exposure, aiming on either reproducibility of a specific exposure or on the comparability between various kinds of natural or artificial weathering exposure. The materials that are used as weathering reference materials differ in their sensitivities (as well as in interactions and interferences of the latter), conditioned by the different processes which lead to the respective property change. It is also essential to take into account the necessary measurement equipment for the respective property change, in order to allow timely intervention. What are the key issues on choosing a weathering reference material? What can be learned from the weathering reference materials, investigated so far? Possibilities and limitations are discussed on the basis of existing weathering reference materials. Conclusions are drawn, for establishing new weathering reference materials. T2 - 9th European Weathering Symposium CY - Basel, Switzerland DA - 18.09.2019 KW - Temperature dependency KW - Weathering KW - Irradiation KW - Spectral sensitivity PY - 2019 SN - 978-3-9818507-5-8 SP - 283 EP - 292 PB - Thomas Würtz Grafik-Design CY - Karlsruhe, Germany AN - OPUS4-49150 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Geburtig, Anja T1 - UV radiation and light as impact factors N2 - Radiation in the spectral ranges of UV and VIS are environmental impact factors that can cause ageing of many materials or products. The reason for this is that especially organic materials, such as food or many pharmaceutical, are subject to photochemical degradation. Of course, suited transparent packaging material may give protection against such impact for radiation sensitive fillings. But for this, it is necessary to know about the spectral range of the fillings sensitivity as well as about the radiation impact of the radiation sources that are relevant during the life time of the product. The spectral irradiance for characterizing the emission of various radiation sources is easily measured by means of a spectroradiometer. The spectral sensitivity of a filling's property can be determined by spectrally dispersed irradiation, where the positions on a sample are related to the different wavelengths. Thus, the damaging effect of the different wavelengths can be directly evaluated. A lateral measurement of the relevant property change shows the activation spectrum, which is the product of the spectral radiant exposure and the spectral sensitivity. By measuring the spectral irradiance for each sample position, the spectral sensitivity of the ageing property can be calculated. Comparing the fillings spectral sensitivity and the spectral irradiance of a potential radiation source during later transport and storage, conclusions can be drawn about necessary spectral absorption of a (partly) transparent packaging to give sufficient protection. The setup for such investigation will be shown and several illustrating samples from daily food experience will be given. T2 - 20th IAPRI World Conference on Packaging CY - Campinas, Brazil DA - 12.06.2016 KW - UV radiation KW - Light KW - Spectral sensitivity KW - Spectral irradiance KW - Spectral absorption PY - 2016 SN - 978-85-7029-136-3 SP - 136 EP - 139 AN - OPUS4-36913 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -