TY - CONF A1 - Resch-Genger, Ute A1 - Würth, Christian A1 - Geissler, D. A1 - Wegmann, M. A1 - Gaponik, N. A1 - Eychmüller, A. T1 - Semiconductor nanocrystals with VIS and NIR/IR emission - spectroscopy properties and surface chemistry N2 - Semiconductor nanocrystals with a spherical (QDs) core and a spherical or a rod-shaped Shell, u.a., so-called Quantum dot-Quantum rods (QDQRs) are increasingly used as fluorescent Reporters or optically active components in the life and material science, e.g., in solid state lightening including Plasma Displays. (1,2) Morever, there is an increasing interest in materials with emission >800 nm for bioanalysis, medical diagnostics, and safety barcodes. Prerequisites for the mechanistic understanding of nonradiativ decay channels needed for the rational design of improved nanomaterials and the comparison of material Performance are reliable fluorescence measurements and validated methods for the assessment of their surface chemistry. (3,4) The latter is of particular importance for nanocrystalline Emitters, where surface states and the accessibility of emissive states by quenchers largely control photoluminescence properties. (5) Here, we present results from systematic spectroscopic studies including absolutely measured photolumunescence Quantum yields of different vissible and NIR emisisve QD and QDQRs Systems of varying particle architecture size and surface chemistries in Dispersion and embedded in salt crystals. (6,7) T2 - MCare 2017 CY - Jeju, South Korea DA - 20.02.2017 KW - Semiconductor quantum dot KW - Nanoparticle KW - Absolute fluorometry KW - Integrating sphere spectroscopy KW - NIR KW - IR KW - Fluorescence KW - Surface chemistry KW - Photophysics KW - Quantum yield KW - Single particle PY - 2017 AN - OPUS4-43133 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -