TY - CONF A1 - Witt, Julia A1 - Almalla, Ahed A1 - Özcan Sandikcioglu, Özlem T1 - In situ AFM studies of deformation and corrosion processes on AA2024-T3 aluminium alloy N2 - The performance of functional coatings and adhesively joined hybrid components relies strongly on the stability of the polymer-metal interface. With the increasing utilization of multi-material structures in the automotive and aerospace industry, it is of great scientific and technical interest to understand the processes leading to interface degradation and to develop novel strategies to increase corrosion and delamination resistance. The aim of this project is to develop thin epoxy-based films on aluminium alloy AA2024-T3 as a model system and to investigate their interfacial stability under corrosive and coupled corrosive-mechanical load. Electrochemical and spectroscopic methods were used for the characterisation of the film properties and in situ corrosion experiments were performed by means of AFM. The deformation properties of the aluminium alloy and the model coatings were investigated by means of scanning Kelvin probe force microscopy (SKPFM) utilizing the integrated tensile stage. The presentation will give a brief overview of the capabilities of the new AFM setup to foster future collaborations and summarize our work on the interface stability of model coatings. T2 - Abteilungskolloquium FB6 CY - Berlin, Germany DA - 27.11.2018 KW - Corrosion KW - In situ Atomic Force Microscopy (AFM) KW - Aluminium alloy KW - Scanning Kelvin Probe Force Microscopy (SKPFM) PY - 2018 AN - OPUS4-48027 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Witt, Julia A1 - Almalla, Ahed A1 - Stepien, Daniel A1 - Özcan Sandikcioglu, Özlem T1 - Multilayer thin coatings for corrosion protection of AA2024-T3 aluminium alloy N2 - The performance of adhesively joined hybrid components relies strongly on the stability of the adhesive-material interface. With the increasing utilization of multi-material structures in the automotive and aerospace industry, it is of great scientific and technical interest to understand the processes leading to adhesive failure and to develop novel strategies to increase corrosion and delamination resistance of adhesive joints. The aim of this study is to develop thin epoxy based films and their carbon nanofiller loaded composites on aluminium alloy AA2024-T3 and to investigate their interfacial stability under corrosive and coupled corrosive-mechanical load. Spin coating was used for the layer-by-layer deposition of poly[(o-cresyl glycidyl ether)-co-formaldehyde] and poly-(ethylenimine) bi-layers. Carbon nanofillers are introduced either by mixing into the coating components or in between individual layers. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) analysis was performed to investigate the porosity and water uptake of the model films, respectively. Atomic force microscopy (AFM) results indicated a very homogeneous and dense film with low surface roughness. The bi-layer thickness ranged between 30 to 40 nm. Electrochemical measurements show a higher corrosion resistance with the increase of the bi-layer number. The main novelty of this contribution is the in-situ AFM investigations under coupled corrosive-mechanical load. For this purpose, a tensile module capable of uniaxial stretching and compression with up to 5 kN force was integrated into the AFM stage. Stretching experiments were performed to investigate the mechanical properties and adhesion of the films, as well as structural changes of the film morphology during uniaxial deformation. The contribution will provide detailed information on the new AFM setup and summarize our results on the stability of model epoxy and nanocomposite films on AA2024-T3. T2 - EURADH 2018 CY - Lisbon, Portugal DA - 05.09.2018 KW - Electrochemical Empedance Spectroscopy (EIS) KW - Scanning Kelvin Probe Force Microscopy (SKPFM) KW - Corrosion KW - Delamination KW - Aluminium KW - Epoxide PY - 2018 AN - OPUS4-46513 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -