TY - JOUR A1 - Becker, Amadeus A1 - Schröpfer, Dirk A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - Determination of residual stress evolution during repair welding of high-strength steel components JF - Forces in mechanics N2 - During the assembly of steel structures, unacceptable weld defects may be found. An economical solution is local thermal gouging of the affected areas and re-welding. Due to high shrinkage restraints of repair weld and sur- rounding structure, high global and local welding stresses superimpose, and may lead to cracking and component failure, especially in connection with the degraded microstructure and mechanical properties of high-strength steels during the repair process. Component-related investigations of high-strength steels (FOSTA P1311/ IGF20162N) focus on welding residual stress evolution during local thermal gouging and rewelding. In this study, repair welding of S500MLO (EN 10225) is carried out using in-situ digital image correlation (DIC) and ex- situ X-ray diffraction (XRD) to analyse strains and stresses. Self-restrained slit specimen geometries were identified representing defined rigidity conditions of repair welds of real components, which were quantified using the restraint intensity concept. The specimens were rewelded with constant welding heat control and parameters. Weld specimens exhibited significantly increased transverse residual stresses with higher transverse restraint intensities, in the weld metal, and in the heat affected zone. Transverse stresses along the weld seam decrease at the weld seam ends leading to different stress state during gouging and welding. XRD analysis of the longitudinal and transverse local residual stresses after cooling to RT showed a good comparability with global DIC analyses. KW - Repair-welding KW - High-strength steels KW - X-ray diffraction KW - Digital image correlation KW - Residual stresses PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-555672 DO - https://doi.org/10.1016/j.finmec.2022.100073 SN - 2666-3597 VL - 6 SP - 1 EP - 6 PB - Elsevier CY - Amsterdam AN - OPUS4-55567 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schröpfer, Dirk A1 - Witte, Julien A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - Stresses in repair welding of high-strength steels—part 2: heat control and stress optimization JF - Welding in the World N2 - In welding of high-strength steels, e.g. for foundations and erection structures of wind energy plants, unacceptable defects can occasionally be found in the weld area, which should be removed by thermal gouging and subsequent re-welding. High shrinkage restraint of repair welds may lead to crack formation and component failure, predominantly in interaction with degraded microstructures and mechanical properties due to repair cycles. This study aims for elaboration of recommendations for repair concepts appropriate to the stresses and materials involved to avoid cold cracking, damage and expensive reworking. In part 1 [1] of this study, systematic investigations of influences of shrinkage restraint on residual stresses and cold cracking risk during repair welding of two high-strength steels S500MLO for offshore application and S960QL for mobile crane structures were focussed. In this part 2, the microstructure, particularly hardness, and residual stresses due to gouging and influences of heat control parameters in repair welding are analysed. A clear reduction in residual stress after gouging can be observed, especially for the specimens with restrained transverse shrinkage. Gouging to a depth of approx. 2/3 of the seam height does not lead to a complete relaxation of the observed reaction forces. Particularly for the higher strength steel S960QL, there are pronounced areas influenced by the gouging process in which a degradation of the microstructure and properties should be assumed. Overall, the repair welds show a significant increase in the width of the weld and HAZ compared to the original weld, especially in the case of S960QL/G89. The repair welds show higher welding-induced stresses than the original welds, especially in the areas of the HAZ and the base metal close to the weld seam. This behaviour can be attributed overall to increased restraint conditions due to the remaining root weld or shorter gouge grooves. In good agreement with earlier investigations, the residual stresses transverse to the weld can be significantly reduced by upwardly limited working or interpass temperatures, and the reaction stresses resulting from high restraint conditions can be effectively counteracted. The influence of the heat input on the stress formation is low compared to the interpass temperature for both test materials. KW - Repair-welding KW - Wind Energy KW - High-strength steels KW - Cold cracking KW - Residual stresses KW - Offshore steels PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-600259 DO - https://doi.org/10.1007/s40194-024-01731-7 SN - 0043-2288 SP - 1 EP - 15 PB - Springer Nature AN - OPUS4-60025 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -