TY - JOUR A1 - Altmann, Korinna A1 - Goedecke, Caroline A1 - Bannick, C.-G. A1 - Abusafia, A. A1 - Scheid, C. A1 - Steinmetz, H. A1 - Paul, Andrea A1 - Beleites, C. A1 - Braun, U. T1 - Identification of microplastic pathways within a typical European urban wastewater system N2 - In recent years, thermoextraction/desorption-gas chromatography/mass spectrometry (TED-GC/MS) has been developed as a rapid detection method for the determination of microplastics (MP) mass contents in numerous environmentally relevant matrices and, in particular, for the measurement of polymers in water samples without time-consuming sample preparation. The TED-GC/MS method was applied to investigate a typical European municipal wastewater system for possible MP masses. Such investigations are important in view of the recent revision of the Urban Wastewater Treatment Directive. Four different representative sampling sites were selected: greywater (domestic wastewater without toilet), combined sewer, and influent and effluent of a wastewater treatment plant (WWTP). All samples were collected by fractional filtration. Filtration was carried out over mesh sizes of 500, 100, 50, and in some cases, 5 µm. Polyethylene (PE), polypropylene (PP), and polystyrene (PS) were detected in all samples, with the PE fraction dominating in all cases. Styrene-butadiene rubber which serves as an indication of tire abrasion, was only found in the influent of the WWTP. The highest MP mass contents were found in the combined sewer, so MP can become a source of pollution during heavy rain events when the capacity limits of the effluent are reached, and the polluted effluent is released uncontrolled into the environment. Based on the studies, MP retention from the WWTP could be estimated to be approximately 96%. Few trends in polymer type or mass contents were detected within the different fractions of the samples or when comparing samples to each other. KW - Microplastics KW - Microplastic analysis KW - TED-GC/MS KW - Microplastic pathways KW - Mass contents PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-568289 SP - 1 EP - 10 PB - Wiley-VCH CY - Weinheim AN - OPUS4-56828 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altmann, Korinna A1 - Scheid, C. A1 - Steinmetz, H. A1 - Bannick, C.-G. A1 - Abusafia, A. A1 - Dittmer, U. A1 - Braun, Ulrike T1 - Microplastic occurrence in urban sewage systems: Identification of sources for pathways into the environment N2 - All over the world, microplastic (MP) particles (particle size: 1 - 1.000 µm) are found in water, soil, air, biota and even food products. But plenty of these discussed findings are based on a very low number of real datasets, which are extrapolated to general projections. Furthermore, most data are not comparable because the strategies for sampling, sample preparation and detection methods are not harmonised/ or standardised. This would require extensive proficiancy tests. Because of the ubiquity presence and the unclear risks, which might arise from those particles, various political and environmental organisations (i.e. OECD, UNEP, WHO) identify the reduction of plastic entry in the environment as a key challenge for now and the future. This challenge includes the identification of relevant entry pathways but also the demand of harmonised, meaningful and reliable analytical procedures. Regarding this task within the last few years, a fast practical solution for MP analysis has been developed, which includes the steps of representative sampling, adequate sample preparation and fast detection. Sampling is done by fractional filtration over sieves with mesh sizes of 500, 100, 50 and 5 µm [1]. The received samples are measured by ThermoExtraction/Desorption-Gas Chromatography-Mass Spectrometry (TED-GC-MS) [1,2]. for the most abundant polymers used in practice, which are polyethylene (PE), polypropylene (PP), polystyrene (PS), polyethylene terephthalate (PET), polyamide (PA) and acrylate as well as styrene-butadiene-rubber (SBR), a main component of tires. The present presentation will give first-time insight in a comprehensive dataset of microplastic analysis for an exemplary urban sewage system. MP mass contents of different waters at several days, such as greywater, stormwater retention tank, influent and effluent of a wastewater treatment plant (WWTP) within an urban sewage system in Germany are determined. Furthermore, the mass of the polymers found in dry weather and rain weather flow are compared. The use of these large datasets allows first expressive conclusions regarding the contribution of urban sewage system to the MP entry sources in the environments. We found PP and PS in all different waters. Furthermore, there is SBR in influent and also in effluent of the WWTP. Surprisingly, we could also detect hugh amounts of PE in the effluent of the WWTP. T2 - SETAC Europe 2020 CY - Online meeting DA - 03.05.2020 KW - Microplastic analysis KW - TED-GC/MS KW - Microplastic particles KW - Microplastic mass contents PY - 2020 AN - OPUS4-50795 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -