TY - CONF A1 - Bertin, Annabelle A1 - Taabache, Soraya A1 - Maskos, M. T1 - Controlled Self-Assembly of Janus Dendrimers via Microfluidics N2 - Unilamellar vesicles self-assembled in water from natural and synthetic phospholipids (liposomes), amphiphilic block copolymers (polymersomes), and more recently amphiphilic Janus dendrimers (dendrimersomes) as hollow soft structures in the nano size regime have attracted increasing interest as they can mimic primitive and contemporary biological membranes, and can be configured into biomimetic nanocapsules with application in nanomedicine such as gene, proteins and drug carriers or theranostics. Compared to other amphiphilic structures, the molecular structure of Janus dendrimers can be precisely controlled: by using the vast range of tools from organic chemistry their size, architecture, density, generation as well as the number of endgroups of the individual dendrons can be modified as desired. Unfortunately, the controlled production of the supramolecular aggregates made thereof is still a challenging task. Conventional batch-based techniques such as the solvent injection method or the film hydration method typically go along with a lack of control over mixing and thus over size, morphology and size distribution. The micromixer technology is a promising method for the controlled preparation of supramolecular assemblies as it allows control of mixing at microscale level. In addition, such microfluidic systems benefit from a high mixing efficiency, a low mixing time as well as from a reproducible and continuous synthesis. Herein, we report on the microfluidic-controlled self-assembly of Janus dendrimers as dendrimersomes and the impact of the mixing parameters on the self-assembly process. T2 - 10th International Dendrimer Symposium CY - Weihai, China DA - 05.08.2017 KW - Micromixers KW - Janus dendrimers KW - Vesicles KW - Self-assembly PY - 2017 AN - OPUS4-41464 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -