TY - CONF A1 - Baumann, Maria A1 - Falkenhagen, Jana A1 - Weidner, Steffen A1 - Wold, Ch. T1 - Characterization of poly(carbonate-dimethylsiloxane)-copolymers via LC, MALDI-TOF mass spectrometry and FTIR N2 - Copolymers made of polycarbonate (PC) and polydimethylsiloxane (PDMS) are broadly applied in material science. High impact-stability and transparency are the marks of bisphenol-A polycarbonate. PDMS on the other hand excels in thermal stability, flame resistance and weatherability. Combining those favourable characteristics in a copolymer yields in a ductile but impact-resistant and flame retardant material. In order to understand the synthesis process and to improve the quality and characteristics of a copolymer, knowing its structure is essential. The challenge lies in the variety of heterogeneities like molecular mass-, block-size- and block-distribution. This study addresses the structural characterization of PC-PDMS-copolymers using different liquid chromatographic techniques, including two dimensional combinations, hyphenated to MALDI-mass spectrometry and FTIR. The large difference in polarities of PC and PDMS is a challenge for liquid chromatography as well as ionization in MALDI. Nevertheless, we were able to differentiate between homopolymer and actual copolymer, clarify the presence of cyclic structures and gain information about the PDMS blocks T2 - SCM-8; International Symposium on the CY - Amsterdam, The Netherlands DA - 30.01.2017 KW - Copolymer characterization KW - Liquid chromatography KW - FTIR KW - MALDI-TOF-MS KW - LCCC PY - 2017 AN - OPUS4-39277 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Baumann, Maria A1 - Falkenhagen, Jana A1 - Weidner, Steffen A1 - Wold, C. A1 - Uliyanchenko, E. T1 - Characterization of copolymers of polycarbonate and polydimethylsiloxane by 2D chromatographic separation, MALDI-TOF mass spectrometry, and FTIR spectroscopy JF - International Journal of Polymer Analysis and Characterization N2 - The structure and composition of polycarbonate polydimethylsiloxane copolymer (PC-co-PDMS) was investigated by applying various analytical approaches including chromatographic separation methods, spectrometric, and spectroscopic detection techniques. In particular, size exclusion chromatography (SEC) and liquid adsorption chromatography operating at different conditions (e.g. using gradient solvent systems) were used to achieve separations according to molar mass and functionality distribution. The coupling of both techniques resulted in fingerprint two-dimensional plots, which could be used to easily compare different copolymer batches. Matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF) mass spectrometry was applied for structural investigations. The different ionization behavior of both comonomers, however, strongly limited the applicability of this technique. In contrast to that, Fourier-transform Infrared (FTIR) spectroscopy could be used to quantify the amount of PDMS in the copolymer at different points in the chromatogram. The resulting methodology was capable of distinguishing PC-co-PDMS copolymer from PC homopolymer chains present in the material. KW - FTIR KW - Liquid chromatography KW - Mass spectrometry KW - Gradient elution KW - Polycarbonate-co-dimethylsiloxane copolymer PY - 2020 DO - https://doi.org/10.1080/1023666X.2020.1820170 VL - 25 IS - 7 SP - 1 EP - 12 PB - Taylor & Francis AN - OPUS4-51369 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Falkenhagen, Jana T1 - Polymer characterisation by multidimensional techniques with focus on LC - MALDI/ESI-TOF-MS N2 - Since the first LC/ ESI-MS experiment of the Nobel prize winner John B. Fenn in 1984, the coupling of liquid chromatographic to mass spectrometric techniques gained a continuous rapid development. The lecture will give a general survey of different LC separation techniques as size exclusion chromatography (SEC), liquid adsorption chromatography (LAC), liquid chromatography at critical conditions (LCCC) and gradient elution liquid chromatography (GELC) combined with Matrix assisted Laser Desorption Ionization (MALDI) respectively Electrospray Ionization (ESI) Time of Flight (TOF) mass spectrometry. Often the deficiencies of stand-alone methods can be bridged. LC, blind to structural information needs mass spectrometry as one of the most powerful detectors able to give detailed information on e.g. the repeat units, functionalization or copolymer composition of the chromatographic separated constituents. A separation prior to MS reduces the polydispersity which is one of the reasons for failing of MS. Also problems with different ionization probabilities in complex mixtures can partly be overcame. On the basis of different examples on- and offline coupling principles will be compared and the pros and cons of both mass spectrometric techniques will be discussed. Recently, MALDI imaging techniques in coupling with chromatography have become interesting e.g. for visualization of copolymer composition. T2 - International Symposium GPC/SEC and Related Techniques CY - Amsterdam, The Netherlands DA - 26.09.2016 KW - Polymers KW - Liquid chromatography KW - MALDI-TOF-MS KW - ESI-TOF-MS PY - 2016 AN - OPUS4-37629 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Falkenhagen, Jana T1 - Characterization of co (polyamide)s N2 - Charactrization of Co(polyamide)s Molar mass distribution; Functionalization; supression of end group effects in favor of sequence distribution analysis; Evidence of of randomization with increasing reaction time T2 - Polyamide Meeting, DSM CY - Sittard, The Netherlands DA - 20.04.2018 KW - Liquid chromatography KW - Mass spectrometry of polymers PY - 2018 AN - OPUS4-44747 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Falkenhagen, Jana T1 - Copolymer structure elucidation by multidimensional techniques with focus on UPLC x ESI-TOF-MS N2 - Structure elucidation of complex synthetic copolymers still represents a challenge. An one-dimensional separation technique cannot give the answer to the question: What are the molar mass distribution (MMD), the functionality distribution (FTD), the chemical composition distribution (CCD), the monomer sequence distribution (MSD), the topology differences within a single broad distributed polymer sample? Since the first LC/ ESI-MS experiment of the Nobel prize winner John B. Fenn in 1984, the coupling of liquid chromatographic to mass spectrometric techniques gained a continuous rapid development. Often the deficiencies of stand-alone methods can be bridged. LC, blind to structural information needs mass spectrometry as one of the most powerful detectors able to give detailed information on e.g. the repeat units, functionalization or copolymer composition of the chromatographic separated constituents. A separation prior to MS reduces radical the dispersity which is one of the reasons for failing of MS. Also problems with different ionization probabilities in complex mixtures can partly be overcame. Different LC separation techniques as size exclusion chromatography (SEC), liquid adsorption chromatography (LAC), liquid chromatography at critical conditions (LCCC) and gradient elution liquid chromatography (GELC) combined with Matrix assisted Laser Desorption Ionization (MALDI) respectively Electrospray Ionization (ESI) Time of Flight (TOF) mass spectrometry are able to give information which otherwise are completely inaccessible. In some cases CID tandem mass spectrometry is applied. Fragmentation of suitable precursor ions resulted in typical fragment ion patterns. This technique enables an additional information on e.g. sequences, structural defects and topology of complex polymer mixtures. Herein a new approach is demonstrated to provide evidence of different functionalities and short block sequences in statistical EO-PO copolymers. Furthermore silsesquioxane mixtures and Polyglycerols are investigated concerning occurring topology effects. T2 - 253rd ACS National Meeting CY - San Francisco, CA, USA DA - 02.04.2017 KW - Copolymer KW - Microstructure KW - Liquid chromatography KW - Mass spectrometry PY - 2017 AN - OPUS4-43372 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Falkenhagen, Jana A1 - Weidner, Steffen A1 - Epping, Ruben T1 - Coupling of chromatographic and spectrometric techniques for polymer characterization N2 - Coupling of chromatographic and spectrometric techniques for polymer characterization; focus topics: LCxMALDI-TOF-MS and UPLC x ESI-TOF-MS T2 - 16. Tagung des Arbeitskreises Polymeranalytik CY - Online meeting DA - 22.03.2022 KW - Liquid chromatography KW - Mass spectrometry KW - Polymers KW - Two-dimensional chromatography (2D-LC) PY - 2022 AN - OPUS4-54567 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -