TY - CONF A1 - Yildirim, Arda A1 - Bühlmeyer, A. A1 - Hayashi, S. A1 - Haenle, J. C. A1 - Sentker, K. A1 - Huber, P. A1 - Laschat, S. A1 - Schönhals, Andreas T1 - Molecular Dynamics of Dipole Functionalized Triphenylene-based Discotics N2 - In this study, the molecular dynamics of a series of dipole functionalized triphenylene-based discotics, forming a columnar mesophase, were investigated by broadband dielectric spectroscopy (BDS). In addition to conductivity and localized dynamics, glassy dynamics were also observed. At higher temperatures an α1-processes and at low temperatures an α2 processes were detected having a completely different temperature dependence of its relaxation times. Different molecular assignments of α1- and α2-processes are suggested. The phase behavior of the material was explored under helium purge down to 100 K by differential scanning calorimetry (DSC). Besides the phase transition temperatures and enthalpies, one or two thermal glass transitions were found for all the materials. Moreover, the glassy dynamics were further investigated by Flash DSC, which is a chip-based calorimetry technique allowing for fast heating and cooling rates as high as 10000K/s. T2 - Spring Meeting of German Physical Society CY - Regensburg, Germany DA - 01.04.2019 KW - Liquid Crystals PY - 2019 AN - OPUS4-47827 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Grunwald, M. A. A1 - Hagenlocher, S. E. A1 - Turkanovic, L. A1 - Bauch, S. M. A1 - Wachsmann, S. B. A1 - Altevogt, L. A. A1 - Ebert, M. A1 - Knöller, J. A. A1 - Raab, A. R. A1 - Schulz, F. A1 - Kolmangadi, Mohamed A. A1 - Zens, A. A1 - Huber, P. A1 - Schönhals, Andreas A1 - Bilitiewski, U. A1 - Laschat, S. T1 - Does thermotropic liquid crystalline self-assembly control biological activity in amphiphilic amino acids? – tyrosine ILCs as a case study N2 - Amphiphilic amino acids represent promising scaffolds for biologically active soft matter. In order to understand the bulk self-assembly of amphiphilic amino acids into thermotropic liquid crystalline phases and their biological properties a series of tyrosine ionic liquid crystals (ILCs) was synthesized, carrying a benzoate unit with 0–3 alkoxy chains at the tyrosine unit and a cationic guanidinium head group. Investigation of the mesomorphic properties by polarizing optical microscopy (POM), differential scanning calorimetry (DSC) and X-ray diffraction (WAXS, SAXS) revealed smectic A bilayers (SmAd) for ILCs with 4-alkoxy- and 3,4-dialkoxybenzoates, whereas ILCs with 3,4,5-trisalkoxybenzoates showed hexagonal columnar mesophases (Colh ), while different counterions had only a minor influence. Dielectric measurements revealed a slightly higher dipole moment of non-mesomorphic tyrosine-benzoates as compared to their mesomorphic counterparts. The absence of lipophilic side chains on the benzoate unit was important for the biological activity. Thus, non-mesomorphic tyrosine benzoates and crown ether benzoates devoid of additional side chains at the benzoate unit displayed the highest cytotoxicities (against L929 mouse fibroblast cell line) and antimicrobial activity (against Escherichia coli DTolC and Staphylococcus aureus) and promising selectivity ratio in favour of antimicrobial activity. KW - Liquid Crystals PY - 2023 U6 - https://doi.org/10.1039/d3cp00485f SN - 1463-9076 VL - 25 IS - 26 SP - 17639 EP - 17656 PB - RCS AN - OPUS4-57796 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -