TY - CONF A1 - Mrkwitschka, Paul A1 - Mieller, Björn A1 - Rabe, Torsten A1 - Markötter, Henning ED - Petzow, G. ED - Mücklich, F. T1 - Machine learning assisted characterization of a Low Temperature Cofired Ceramic (LTCC) module measured by synchrotron computed tomography T2 - Sonderbände der Praktischen Metallographie zur 54. Metallographie-Tagung N2 - The 5G technology promises real time data transmission for industrial processes, autonomous driving, virtual and augmented reality, E-health applications and many more. The Low Temperature Co-fired Ceramics (LTCC) technology is well suited for the manufacturing of microelectronic components for such applications. Still, improvement of the technology such as further miniaturization is required. This study focuses on the characterization of inner metallization of LTCC multilayer modules, especially on the vertical interconnect access (VIA). Critical considerations for this characterization are delamination, pore clustering in and at the edge of the VIA, deformation, and stacking offset. A LTCC multilayer consisting of a glassy crystalline matrix with silver based VIAs was investigated by synchrotron x-ray tomography (CT). The aim of this study is to propose a multitude of structural characteristic values to maximize the information gained from the available dataset. Data analysis has been done with the open source software ImageJ as well as several additional plugins. The high-resolution CT data was evaluated through 2D slices for accessibility reasons. The segmentation of all 2000 slices to assess the different regions e.g. pores, silver and glass ceramic was done by a supervised machine learning algorithm. A quantitative evaluation of shape, deformation, and porosity of the VIA with respect to its dimensions is presented and the suitability of the characterization approach is assessed. T2 - 54. Metallographie Taagung CY - Online meeting DA - 16.09.2020 KW - Machine Learning KW - LTCC KW - Synchrotron Tomography PY - 2020 SN - 978-3-88355-422-8 VL - 54 SP - 136 EP - 141 PB - Deutsche Gesellschaft für Materialkunde e.V CY - Sankt Augustin AN - OPUS4-51298 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mieller, Björn A1 - Rabe, Torsten T1 - Structuring of LTCC substrates by a combination of pressure-assisted sintering and hot-embossing T2 - Additional Conferences (Device Packaging, HiTEC, HiTEN, CICMT) N2 - A novel technology for the structuring of LTCC surfaces is introduced. The material is shaped in a zero-shrinkage process by embossing a glassy carbon mold into the softened LTCC directly after termination of the shrinkage. Three commercially available LTCC compositions (Ceramtape GC, Heratape CT707, and DP951) were tested. Diverse raised and lowered structures including rings, grids, and characters were fabricated. Different material behavior was observed for the tested compositions. Promising results were achieved with Ceramtape GC. Embossing of precise, 40 µm deep circular cavities and 50 µm high raised characters is demonstrated. Processing of 100 × 100 mm² substrates is possible. DP951 showed very good moldability, but also unwanted material displacement due to evaporating lead. A high displacement capacity but uneven heights of embossed structures were observed on CT707 samples. SEM investigations proved the precise transfer of surface contours from the mold to the LTCC. Thereby, the high potential of the hot-embossing process for micro-patterning of LTCC is illustrated. T2 - 11th International Conference and Exhibition on Ceramic Interconnects and Ceramic Microsystem Technologies (CICMT 2015) CY - Dresden, Germany DA - 20.04.2015 KW - LTCC KW - Glass-like carbon PY - 2015 DO - https://doi.org/10.4071/CICMT-THA24 SN - 2380-4491 VL - 2015 IS - CICMT SP - 000297 EP - 000303 AN - OPUS4-40135 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -