TY - CONF A1 - Koerdt, Andrea A1 - An, Biwen Annie A1 - Özcan Sandikcioglu, Özlem A1 - Widdel, F. T1 - Microbial corrosion of iron coupled to methanogenesis by strains from different environments N2 - Microbially influenced corrosion (MIC) of iron is usually attributed to sulfate-reducing microorganisms (SRM) which act upon the metal by the reactiveness of hydrogen sulfide, and by withdrawal of the available electrons (Fe → Fe²⁺ + 2e⁻ ; E° = 0.47 V) in electrical contact through surface attachment. Also methanogenic archaea are supposed to cause MIC. Because they do not produce hydrogen sulfide, withdrawal of electrons may be their main corrosive mechanism; however, mechanistic details and kinetics of the overall process are poorly understood. Precipitation of siderite (4Fe + 5HCO₃⁻ + 5H⁺ → 4FeCO₃ + CH₄ + 3H₂O) can lead to an insulating layer on the metal surface and lower the corrosion rate. Still, the extent of FeCO₃ precipitation may be significantly influenced by environmental conditions such as pH and advective processes. To investigate the corrosive potential of methanogens, we studied strains isolated from marine sediments (Methanococcus maripaludis 14266, 2067, Methanobacterium-affiliated strain IM1), crude oil tanks (Methanococcus maripaludis Mic1c10, KA1) and the oral cavity (Methanobrevibacter oralis) in a closed (batch) culture, and in a sand-packed flow-through cell with pH control and simulation of a fluctuating environment. Results indicate that the rates of iron corrosion due to coupled methanogenesis (up to 0.3 mm/yr) are comparable to that caused by SRM. Surface analyses of the metal showed severe pitting. Such knowledge and deeper understanding also from an electrokinetic point of view may not only provide further models in microbial electrophysiology, but also contribute to mitigation strategies in MIC. T2 - ISME 17th International Symposium on Microbial Ecology CY - Leipzig, Germany DA - 12.08.2018 KW - Corrosion KW - Methanogens KW - Biofilm KW - Flow-System KW - Iron PY - 2018 AN - OPUS4-45735 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - An, Biwen Annie A1 - Koerdt, Andrea A1 - Kleinbub, Sherin T1 - Microbial modelling of sulfate-reducing bacteria (SRB) and methanogenic archaea (ME) using iron N2 - Sulfate reducing bacteria (SRB) and methanogenic archaea (MA) are commonly found in the oil and gas environments. The formation of hydrogen sulfide (HS-) is particularly concerning for the petroleum industry due to its corrosiveness. However, the activities of SRB are limited to the concentration of sulfate present in the environment, whereas methanogens can utilize substrates such as H¬2 for methanogenesis. MA is commonly found in sulfate-free environments, such as deep sediments, and are known to form interspecies electron transfer relationships with SRB. Recently, SRB and MA capable of microbiologically influenced corrosion (MIC) by using elemental iron as a direct electron source (EMIC) have gained increased attention. On the iron surface, EMIC-SRB can outcompete EMIC-MA in the presence of sulfate, but this changes as sulfate depletes. The formation of FeS on the metal surface can be further utilized by MA for methanogenesis as it provides a conductive path. However, the possible kinetics involved of the overall process are currently unknown. We obtained a co-culture of EMIC-SRB and EMIC-MA to investigate the growth rates and electrical potential changes under different environmental conditions, including changes in pH, temperature and salinity. Results indicate that under neutral conditions and using iron as the sole substrate, methane production (up to 5 mM) starts after sulfate was depleted. Electrochemical measurements will be conducted on the co-culture under different conditions to determine the changes in the electrical potential in correlation with the sulfate and methane concentration. Fluorescence and electron microscope images of the biofilm structure will be used to visualize cell distribution and morphology. This study embarks the first step of understanding the relationship between EMIC-SRB and EMIC-MA. Such knowledge is important for the field of microbial electrophysiology and can be further explored for industrial applications. T2 - 7th International Symposium on Applied Microbiology and Molecular Biology in Oil Systems (ISMOS-7) CY - Halifax, Canada DA - 18.06.2019 KW - MIC KW - Corrosion KW - FIB/SEM KW - Corrosion products KW - Bacteria KW - Archaea KW - Iron PY - 2019 AN - OPUS4-49420 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hahn, Marc Benjamin T1 - Temperature in micromagnetism: Cell size and scaling effects of the stochastic Landau-Lifshitz equation N2 - The movement of the macroscopic magnetic moment in ferromagnetic systems can be described by the Landau-Lifshitz (LL) or Landau-Lifshitz-Gilbert (LLG) equation. These equations are strictly valid only at absolute zero temperature. To include temperature effects a stochastic version of the LL or LLG equation for a spin density of one per unit cell can be used instead. To apply the stochastic LL to micromagnetic simulations, where the spin density per unit cell is generally higher, a conversion regarding simulation cell size and temperature has to be established. Based on energetic considerations, a conversion for ferromagnetic bulk and thin film systems is proposed. The conversion is tested in micromagnetic simulations which are performed with the Object Oriented Micromagnetic Framework (OOMMF). The Curie temperatures of bulk Nickel, Cobalt and Iron systems as well as Nickel thin-film systems with thicknesses between 6.3 mono layer (ML) and 31ML are determined from micromagnetic simulations. The results show a good agreement with experimentally determined Curie temperatures of bulk and thin film systems when temperature scaling is performed according to the presented model. KW - Micromagnetism KW - LLG KW - LL equation KW - Landau Lifshitz equation KW - Landau Lifshitz Gilbert equation KW - Stochastic Landau Lifshitz equation KW - Stochastic Landau Lifshitz Gilbert equation KW - Curie temperature KW - Magnetic Nanoparticles KW - Thin film systems KW - Temeprature scaling KW - Phase transition KW - Magnet coupling KW - Ferromagnetism KW - Superparamagnetism KW - Paramagnetism KW - Ni KW - Co KW - Fe KW - Steel KW - Nickel KW - Cobalt KW - Iron KW - Temperature effects KW - Cell size KW - Damping factor KW - Gamma KW - Alpha KW - Spin KW - Magnetic moment KW - Magnetic interacion KW - Magnetization dynamics KW - Domain wall KW - Exchange length KW - temeprature dependent exchange length KW - Bloch wall KW - Neel wall KW - Exchange interaction KW - Magnetic anisotropy KW - Simulation KW - OOMMF KW - Object oriented micromagnetic framework PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-484610 VL - 3 IS - 7 SP - 075009-1 EP - 075009-8 PB - IOPscience CY - England AN - OPUS4-48461 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wurzler, Nina A1 - Schutter, Jan David A1 - Wagner, R. A1 - Dimper, Matthias A1 - Lützenkirchen-Hecht, D. A1 - Özcan Sandikcioglu, Özlem T1 - Abundance of Fe(III) during cultivation affects the microbiologically influenced corrosion (MIC) behaviour of iron reducing bacteria Shewanella putrefaciens N2 - The effect of the presence of Fe(III) during the cultivation on the electrochemical activity and corrosion behaviour of dissimilatory iron reducing bacteria Shewanella putrefaciens was studied by means of ex situ and in situ X-ray absorption near-edge spectroscopy (XANES). Stainless steel AISI 304 and thin iron films were studied as substrates. XANES analysis indicated an accelerated iron dissolution and growth of an oxide/hydroxide film for the culture grown with Fe(III) in comparison to the culture grown in absence of Fe(III). Electrochemical Analysis indicated that the biofilm resulted in acceleration of the general corrosion but provides protection against local corrosion. KW - Stainless Steel KW - XANES KW - Iron KW - Cyclic Voltammetry KW - Microbiological Corrosion PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-513788 VL - 174 SP - 108855 PB - Elsevier Ltd. AN - OPUS4-51378 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Falk, Florian A1 - Sobol, Oded A1 - Stephan-Scherb, Christiane T1 - The impact of the microstructure of Fe-16Cr-0.2C on high-temperature oxidation – sulphidation in SO2 N2 - This study elucidates the impact of the microstructure of Fe-16Cr-0.2C on oxide layer formation at 650 ◦C in Ar-0.5 % SO2. A cold-rolled and two heat-treated states of the alloy were exposed for up to 1000 h. The samples were characterised in detail from microstructural and chemical perspectives using scanning electron microscopy (SEM), X-ray diffraction (XRD) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The microstructural modification of the alloy by heat-treatment was advantageous. It was found that Cr-carbides support chromia formation and reduce sulphidation when their area fraction is low and diameter is small. KW - Steel KW - Iron KW - SIMS KW - SEM KW - High temperature corrosion KW - Oxidation KW - Sulphidation PY - 2021 U6 - https://doi.org/10.1016/j.corsci.2021.109618 VL - 190 SP - 109618 PB - Elsevier Ltd. AN - OPUS4-53001 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stephan-Scherb, Christiane A1 - Menneken, Martina A1 - Weber, Kathrin A1 - Agudo Jácome, Leonardo A1 - Nolze, Gert T1 - Elucidation of orientation relations between Fe-Cr alloys and corrosionproducts after high temperature SO2 corrosion N2 - The early stages of corrosion of Fe-Cr-model alloys (2 and 9 % Cr) were investigated after exposure at 650 °C in0.5 % SO2containing gas by electron backscattered diffraction (EBSD) and transmission electron microscopy(TEM). The impact of the grain orientation of the base alloy on the orientation relations of the corrosion productsis presented. After 2 min–5 min exposure the formation of a multi-layered corrosion zone was discovered. Aclear orientation relationship between ferrite and the (Fe,Cr)3O4 spinel could be demonstrated. The obtainedresults show the importance of the grain orientation on oxidation resistance. KW - Iron KW - TEM KW - SEM KW - High temperature corrosion PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-508911 VL - 174 SP - 1 EP - 11 PB - Elsevier AN - OPUS4-50891 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stephan-Scherb, Christiane A1 - Lehmusto, Juho A1 - Falk, Florian A1 - Sobol, Oded A1 - Pint, Bruce T1 - Comprehensive insights into competitive oxidation/sulfidation reactions on binary ferritic alloys at high temperatures N2 - Interpreting high-temperature corrosion induced by mixed-gas atmospheres is challenging due to the different contributions of oxidizing gases. Here, a comprehensive study on the combined oxidation/sulfidation using label molecules is presented. Fe-Cr model alloys with 2 wt% and 9 wt% Cr were isothermally exposed using a volumetric mixture of 0.5%S16O2/27%H218O and 0.5%S16O2/7%H218O at 650 ◦C for 5 h and then characterized by secondary ion mass spectroscopy (SIMS). Additionally, the reactions were followed in-situ utilizing energy dispersive X-ray diffraction. The study showed that both S16O2 and H218O contribute to the oxidation of the alloys but to different extents depending on the Cr-content. KW - SEM KW - Steel KW - Iron KW - SIMS PY - 2022 U6 - https://doi.org/10.1016/j.corsci.2022.110236 SN - 0010-938X VL - 203 SP - 1 EP - 13 PB - Elsevier Ltd. AN - OPUS4-58992 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -