TY - CONF A1 - Sentker, K. A1 - Yildirim, Arda A1 - Knopp, K. A1 - Schönhals, Andreas A1 - Huber, P. T1 - Columnar axial orientation of discotic liquid crystals in nanoporous solids N2 - Successful implementation of an optical polarimetry measurement setup. Due to wall anchoring interactions HAT6 embedded in an untreated alumina membrane exhibits a radial orientation for pore sizes in between 30 nm and 80 nm. Embedded in large membranes, pore size of 180 nm, HAT6 forms the favored hexagonal columnar phase along the pore axis. T2 - 80. Jahrestagung der DPG und DPG-Frühjahrstagung CY - Regensburg, Germany DA - 06.03.2016 KW - Discotic Liquid Crystals KW - Nanoconfinement KW - Orientation PY - 2016 AN - OPUS4-36479 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yildirim, Arda A1 - Sentker, K. A1 - Huber, P. A1 - Schönhals, Andreas T1 - Structure, Dynamics and Phase Behavior of a Discotic Liquid Crystal Confined in Nanoporous Anodic Aluminum Oxide Membranes N2 - Discotic liquid crystals (DLCs) are a promising class of soft matter for electronic applications. This is due to their ability to organize and stack themselves into columns in a hexagonal columnar mesophase, driven by the overlapping of the π orbitals of their aromatic core. This leads to a high charge-carrier mobility along the column axis. Previous studies on DLCs showed that their properties, such as phase transition temperatures and enthalpies, are susceptible to nanoconfinement. In this study, 2,3,6,7,10,11 hexakis[hexyloxy] triphenylene (HAT6), a triphenylene based DLC, was confined into parallel aligned cylindrical nanopores of anodic aluminum oxide (AAO) membranes by melt infiltration in the isotropic phase under an argon atmosphere. Furthermore, the pore surfaces of a series of membranes were chemically modified, resulting in a more hydrophobic pore surface than the unmodified ones. The structure, dynamics, and the phase behavior of HAT6 confined into modified and unmodfied nanopores of AAO were investigated by broadband dielectric spectroscopy and differential scanning calorimetry. Results will be discussed in detail. T2 - DPG Spring Meeting 2017 CY - Dresden, Germany DA - 19.03.2017 KW - Discotic Liquid Crystals KW - Nanoconfinement PY - 2017 AN - OPUS4-39561 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sentker, Kathirn A1 - Yildirim, Arda A1 - Lippmann, M. A1 - Hoffmann, T. A1 - Seeck, O. A1 - Kityk, A. A1 - Schönhals, Andreas A1 - Huber, Patrick T1 - Fabrication of organic nanowires by melt infiltration of a discotic liquid crystal: A combined X-ray diffraction and optical birefringence study N2 - Optical polarimetry and angle dependent X-ray scattering in employed to study the structure of a discotic liquid crystal confined into nanochannels. The pore size dependence of the obtauned data are discussed in detail. T2 - DPG Spring Meeting 2017 CY - Dresden, Germany DA - 20.03.2017 KW - Discotic Liquid Crystals KW - Nanoconfinement PY - 2017 AN - OPUS4-39591 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yildirim, Arda A1 - Sentker, K. A1 - Huber, P. A1 - Schönhals, Andreas T1 - Structure, Dynamics and Phase Behavior of a Discotic Liquid Crystal Confined in Nanoporous Anodic Aluminum Oxide Membranes N2 - Discotic liquid crystals (DLCs) are a promising class of soft matter for electronic applications. This is due to their ability to organize and stack themselves into columns in a hexagonal columnar mesophase, a mesophase in between the plastic crystalline and isotropic phase, driven by the overlap of the π orbitals of their aromatic core. This leads to a high charge-carrier mobility along the column axis. Further, these columns could then be considered as “molecular nanowires”. Spatial confinement of soft matter in nanoporous media influences its structure, thermodynamic properties, and mobility. Embedding liquid crystals and polymers into nanopores of anodic aluminum oxide (AAO) results in a 2D nanoconfinement of these materials. This confinement affects their properties, compared to the bulk, such as phase transition temperatures and enthalpies, molecular mobility, and architecture of the crystallization. In this study, 2,3,6,7,10,11 hexakis[hexyloxy] triphenylene (HAT6), a triphenylene-based DLC, was confined into nanoporous AAO membranes. The structure, dynamics and the phase behavior of the confined HAT6 were investigated by broadband dielectric spectroscopy (BDS) and differential scanning calorimetry (DSC). HAT6 was embedded into nanoporous AAO membranes by melt infiltration in the isotropic phase under argon atmosphere. The membranes have parallel aligned cylindrical nanopores, with different pore diameters in the range of 10-180 nm. Bulk HAT6 forms a hexagonal columnar phase; in between the isotropic phase above 371 K and the plastic crystalline phase below 340 K. Unlike the bulk, the confined HAT6 split the phase transitions in two or more, which might be interpret as different phase structures; close to the wall and at the pore center. Moreover, the phase transitions of the confined HAT6 shifted, with decreasing pore diameter, to lower temperatures. The dependencies of the phase transition temperatures on the pore size was well-described by the Landau-de Gennes model. Furthermore, pore surfaces of a series of membranes were chemically modified, resulting in a more hydrophobic pore surface than the unmodified ones. HAT6 was embedded into the modified membranes by the same aforementioned preparation. The influence of the changed host-guest-interaction, on the structure, dynamics, and the phase behavior of HAT6 confined in the modified membranes, was also investigated by BDS and DSC. T2 - Liquids 2017 – 10. Liquid Matter Conference CY - Ljubljana, Slovenia DA - 17.07.2017 KW - Discotic Liquid Crystals KW - Nanoconfinement PY - 2017 AN - OPUS4-41178 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yildirim, Arda T1 - Structure, Dynamics and Phase behavior of bulk and confined liquid crystals N2 - In this study, the molecular dynamics of two linear-shaped tetramethylated guanidinium triflates ionic liquid crystals were investigated by a combination of Broadband Dielectric Spectroscopy (BDS) and Specific Heat Spectroscopy (SHS). Three processes were detected by BDS; at low temperature γ-process, at higher temperatures α-process and at even higher temperatures conductivity. The γ-process indicates localized fluctuations, and the α-process designates cooperative fluctuations. Slightly different restrictions were found for conductivity processes of LC536 and LC537 due to the slightly different lengths of alky chains. Furthermore, the cooperative dynamics were also probed by SHS. The cooperative dynamics probed by the different techniques (BDS and SHS) compared, and assigned to the different restrictions on the cooperativity due to the difference in the sensitivity of the techniques. T2 - Seminar Vortrag Universität Stuttgart CY - Stuttgart, Germany DA - 24.07.2017 KW - Discotic Liquid Crystals PY - 2017 AN - OPUS4-41179 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sentker, K. A1 - Yildirim, Arda A1 - Zantop, A. A1 - Lippmann, M. A1 - Hofmann, T. A1 - Seeck, O. A1 - Kityck, A. A1 - Mazza, M. A1 - Schönhals, Andreas A1 - Huber, P. T1 - Characterization of the thermotropic phase behavior and microscopic structure of a confined discotic liquid crystal N2 - Discotic liquid crystals (DLC) filled into cylindrical nanopores exhibit a liquid crystalline phase with their molecules arranged in hexagonal columns. The columns orient perpendicular (radially) or parallel (axially) with respect to the pore axis depending on surface anchoring conditions and pore size. Axially oriented columns enable the fabrication of organic nanowires utilizing the high conductivity in the stacking direction due to overlapping π-electrons. This leads to interesting applications in e.g. organic semiconductorbased devices. The molecular ordering of the liquid crystalline columns can be probed by temperature dependent optical retardation measurements supplemented by X-ray diffraction sensitive to the translational order. We investigated the DLC 2, 3, 6, 7, 10, 11 - hexakis [hexyloxy] triphenylene (HAT6) embedded in nanoporous alumina and silica membranes as function of the pore diameter (12 nm - 180 nm). Due to their hydrophilic nature porous membranes enforce face-on anchoring leading to a radial orientation. To obtain edge-on anchoring conditions, and thus favoring axial orientation, the silica membrane surface is chemically modified. The optical retardation measurements show that the columns orient radially in these membranes independent of the anchoring conditions. Interestingly, a quantized phase transition of each molecular layer is found indicated by a distinct increase of the optical orientation. Additionally, an axial orientation of HAT6 filled into alumina membranes with a pore diameter of 25 nm is achieved. A Landau-de Gennes ansatz semi-quantitatively describes the phase transition behavior observed. X-ray diffraction experiments performed at the 3rd generation synchrotron radiation source PETRA III at DESY giving detailed information about the translational order support these findings. Summarizing, this study shows the existence of a phase transition in the molecular range as well as the suitability of the membrane with 25 nm pores as a template for preparing organic nanowires. T2 - Liquids 2017 – 10th Liquid Matter Conference CY - Ljubljana, Slovenia DA - 17.07.2017 KW - Discotic Liquid Crystals PY - 2017 AN - OPUS4-41180 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yildirim, Arda A1 - Sentker, K. A1 - Huber, P. A1 - Schönhals, Andreas T1 - Collective Orientational Order and Phase Behavior of a Discotic Liquid Crystal under Confinement N2 - Discotic liquid crystals (DLCs) are a promising class of soft matter for electronic applications. This is due to their ability to self-organize into columns in a hexagonal columnar mesophase, driven by the overlapping of the π orbitals of their aromatic cores. This leads to a high charge-carrier mobility along the column axis. Previous studies on DLCs showed that their properties, such as phase transition temperatures and enthalpies, are susceptible to nanoconfinement. In this study, 2,3,6,7,10,11 hexakis[hexyloxy] triphenylene (HAT6) was confined into parallel aligned cylindrical nanopores of anodic aluminum oxide (AAO) membranes by melt infiltration. Furthermore, the pore surfaces of a series of membranes were chemically modified, resulting in a more hydrophobic pore surface than the unmodified ones. Collective orientational order and phase behavior of HAT6 confined into modified and unmodified nanopores of AAO were investigated by broadband dielectric spectroscopy and differential scanning calorimetry respectively. T2 - Spring Meeting of German Physical Society CY - Berlin, Germany DA - 12.03.2018 KW - Discotic Liquid Crystals PY - 2018 AN - OPUS4-44506 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yildirim, Arda A1 - Bühlmeyer, A. A1 - Hayash, S A1 - Haenle, J. C. A1 - Sentker, K. A1 - Krause, Christina A1 - Huber, Patrick A1 - Laschat, Sabine A1 - Schönhals, Andreas T1 - Multiple glassy dynamics in dipole functionalized triphenylene-based discotic liquid crystals revealed by broadband dielectric spectroscopy and advanced calorimetry – assessment of the molecular origin JF - Physical Chemistry Chemical Physics N2 - A selected series of dipole functionalized triphenylene-based discotic liquid crystals (DLCs) was synthesized and investigated in a systematic way to reveal the phase behavior and molecular dynamics. The later point is of particular importance to understand the charge transport in such systems which is the key property for their applications such as organic field-effect transistors, solar cells or as nanowires in molecular electronics, and also to tune the properties of DLCs. The mesomorphic properties were studied by polarizing optical microscopy, X-ray diffraction, and differential scanning calorimetry, which were compared to the corresponding unfunctionalized DLC. The molecular dynamics were investigated by a combination of state-of-the-art broadband dielectric spectroscopy (BDS) and advanced calorimetry such as fast scanning calorimetry (FSC) and specific heat spectroscopy (SHS). Besides localized fluctuations, surprisingly multiple glassy dynamics were detected for all materials for the first time. Glassy dynamics were proven for both processes unambiguously due to the extraordinary broad frequency range covered. The a1-process is attributed to fluctuations of the alky chains in the intercolumnar space because a polyethylene-like glassy dynamics is observed. This corresponds to a glass transition in a confined three-dimensional space. The a2-process found at temperatures lower than a1-process, is assigned to small scale rotational and/or translational in plane fluctuations of the triphenylene core inside distorted columns. This can be considered as a glass transition in a one-dimensional fluid. Therefore, obtained results are of general importance to understand the glass transition, which is an unsolved problem of condensed matter science. KW - Discotic Liquid Crystals KW - Broadband dielectric spectroscopy KW - Flash DSC KW - Specific heat spectroscopy PY - 2019 DO - https://doi.org/10.1039/c9cp03499d SN - 1463-9076 VL - 21 IS - 33 SP - 18265 EP - 18277 PB - RSC AN - OPUS4-48739 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sentker, K. A1 - Yildirim, Arda A1 - Lippmann, M. A1 - Zantop, A. W. A1 - Bertram, F. A1 - Hofmann, T. A1 - Seeck, O. H. A1 - Kityk, A. A1 - Mazza, M. G. A1 - Schönhals, Andreas A1 - Huber, P. T1 - Self-assembly of liquid crystals in nanoporous solids for adaptive photonic metamaterials JF - Nanoscale N2 - Nanoporous media exhibit structures significantly smaller than the wavelengths of visible light and can thus act as photonic metamaterials. Their optical functionality is not determined by the properties of the base materials, but rather by tailored, multiscale structures, in terms of precise pore shape, geometry, and orientation. Embedding liquid crystals in pore space provides additional opportunities to control light–matter interactions at the single-pore, meta-atomic scale. Here, we present temperature-dependent 3D reciprocal space mapping using synchrotron-based X-ray diffraction in combination with high-Resolution birefringence experiments on disk-like mesogens (HAT6) imbibed in self-ordered arrays of parallel cylindrical pores 17 to 160 nm across in monolithic anodic aluminium oxide (AAO). In agreement with Monte Carlo computer simulations we observe a remarkably rich self-assembly behaviour, unknown from the bulk state. It encompasses transitions between the isotropic liquid state and discotic stacking in linear columns as well as circular concentric ring formation perpendicular and parallel to the pore axis. These textural transitions underpin an optical birefringence functionality, tuneable in magnitude and in sign from positive to negative via pore size, pore surface-grafting and temperature. Our study demonstrates that the advent of large-scale, self-organised nanoporosity in monolithic solids along with confinement-controllable phase behaviour of liquid-crystalline matter at the single-pore scale provides a reliable and accessible tool to design materials with adjustable optical anisotropy, and thus offers versatile pathways to finetune polarisation-dependent light propagation speeds in materials. Such a tailorability is at the core of the emerging field of transformative optics, allowing, e.g., adjustable light absorbers and extremely thin metalenses. KW - Discotic Liquid Crystals PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-499601 DO - https://doi.org/10.1039/c9nr07143a SP - 1 EP - 14 PB - RSC Royal Society of Chemistry AN - OPUS4-49960 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yildirim, Arda A1 - Sentker, K. A1 - Smales, Glen Jacob A1 - Pauw, Brian Richard A1 - Huber, P. A1 - Schönhals, Andreas T1 - Collective orientational order and phase behavior of a discotic liquid crystal under nanoscale confinement JF - Nanosale advances N2 - The phase behavior and molecular ordering of hexakishexyloxy triphenylene (HAT6) DLC under cylindrical nanoconfinement is studied utilizing differential scanning calorimetry (DSC) and dielectric spectroscopy (DS), where cylindrical nanoconfinement is established through embedding HAT6 into the nanopores of anodic aluminum oxide membranes (AAO), and a silica membrane with pore diameters ranging from 161 nm down to 12 nm. Both unmodified and modified pore walls were considered, and in the latter case the pore walls of AAO membranes were chemical treated with n octadecylphosphonic acid (ODPA) resulting in the formation of a 2.2 nm thick layer of grafted alkyl chains. Phase transition enthalpies decrease with decreasing pore size, indicating that a large proportion of the HAT6 molecules within the pores has a disordered structure, which increases with decreasing pore size for both pore walls. In the case of the ODPA modification the amount of ordered HAT6 is increased compared to the unmodified case. The pore size dependencies of the phase transition temperatures were approximated using the Gibbs Thomson equation, where the estimated surface tension is dependent on the molecular ordering of HAT6 molecules within the pores and upon their surface. DS was employed to investigate the molecular ordering of HAT6 within the nanopores. These investigations revealed that with a pore size of around 38 nm, for the samples with the unmodified pore walls, the molecular ordering changes from planar axial to homeotropic radial. However, the planar axial configuration, which is suitable for electronic applications, can be successfully preserved through ODPA modification for most of the pore sizes. KW - Discotic Liquid Crystals KW - Nanoconfinement PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-475222 DO - https://doi.org/10.1039/c8na00308d SN - 2516-0230 VL - 1 IS - 3 SP - 1104 EP - 1116 PB - RSC AN - OPUS4-47522 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -