TY - CONF A1 - Léonard, Fabien A1 - Bruno, Giovanni T1 - Distance transform methodology for advanced impact damage characterisation of composite laminates by X-ray computed tomography N2 - During their life cycle, composite structures used in aircraft structures can be subjected to high- and low-velocity impact loading. High velocity impact damage is usually easy to detect as it creates visible external damage. Low-velocity impacts are more complex to assess because, although significant damage can be generated internally, there can be little indication of external damage on the impacted surface, leading to the term BVID. Impact damage, especially barely visible impact damage, is therefore of primary concern for design and maintenance of modern aircraft composite structures. As a result there is a concerted research effort to improve the damage resistance and tolerance of these materials. One of the great strengths of X-ray computed tomography over conventional inspection methods (ultrasound, thermography, radiography) is that it can image damage in 3D. or inter-ply interfaces. An X-ray computed tomography (CT) data processing methodology is developed to extract the through-thickness distribution of damage in curved or deformed composite panels. The method is applied to [(0°/90°)2]s carbon fibre reinforced polymer (CFRP) panels subjected to low velocity impact damage (5 J up to 20 J) providing 3D ply-by-ply damage visualisation and analysis. Our distance transform approach allows slices to be taken that approximately follow the composite curvature allowing the impact damage to be separated, visualised and quantified in 3D on a ply-by-ply basis. In this way the interply delaminations have been mapped, showing characteristic peanut shaped delaminations with the major axis oriented with the fibres in the ply below the interface. This registry to the profile of the panel constitutes a significant improvement in our ability to characterise impact damage in composite laminates and extract relevant measurements from X-ray CT datasets. T2 - ECNDT2018 CY - Gothenburg, Sweden DA - 11.06.2018 KW - Panels KW - Data processing KW - Correlation map KW - CT KW - Delamination PY - 2018 AN - OPUS4-45207 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Léonard, Fabien A1 - Stein, J. A1 - Soutis, C. A1 - Withers, P. J. T1 - The quantification of impact damage distribution in composite laminates by analysis of X-ray computed tomograms N2 - One of the great strengths of X-ray computed tomography over conventional inspection methods (ultrasound, thermography, radiography) is that it can image damage in 3D. However for curved ordeformed composite panels it can be difficult to automatically ascribe the damage to specific plies or inter-ply interfaces. An X-ray computed tomography (CT) data processing methodology is developed to extract the through-thickness distribution of damage in curved or deformed composite panels. The method is applied to [(0°/90°)2]s carbon fibre reinforced polymer (CFRP) panels subjected low velocity impact damage (5 J up to 20 J) providing 3D ply-by-ply damage visualisation and analysis. Our distance transform approach allows slices to be taken that approximately follow the composite curvature allowing the impact damage to be separated, visualised and quantified in 3D on a ply-by-ply basis. In this way the interply delaminations have been mapped, showing characteristic peanut shaped delaminations with the major axis oriented with the fibres in the ply below the interface. This registry to the profile of the panel constitutes a significant improvement in our ability to characterise impact damage in composite laminates and extract relevant measurements from X-ray CT datasets. KW - Delamination KW - Impact behaviour KW - Non-destructive testing KW - X-ray computed tomography KW - Distance transform PY - 2017 UR - http://www.sciencedirect.com/science/article/pii/S0266353817307157?via%3Dihub U6 - https://doi.org/10.1016/j.compscitech.2017.08.034 SN - 0266-3538 SN - 1879-1050 VL - 152 SP - 139 EP - 148 PB - Elsevier Ltd. AN - OPUS4-42556 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Witt, Julia A1 - Almalla, Ahed A1 - Özcan Sandikcioglu, Özlem T1 - AFM-Untersuchungen von funktionellen Beschichtungen und Strukturänderungen unter mechanischer Beanspruchung N2 - Die Rasterkraftmikroskopie (AFM) hat sich in den letzten Jahren als eine vielseitige Abbildungstechnik von Oberflächen mit einer sehr hohen Ortsauflösung etabliert. Über die Untersuchung der reinen Oberflächentopographie sind erweiterte Modi in der Lage, gleichzeitig Informationen über die elektrischen und magnetischen Eigenschaften sowie Adhäsionsprozesse auf Oberflächen zu liefern. Interessanter wird es, wenn das AFM mit geeigneten Messzellen für in-situ-Untersuchungen in kontrollierten Atmosphären oder in Elektrolyten unter elektrochemischer Kontrolle ausgestattet ist. Dies ermöglicht die Untersuchung von Korrosions- und Adhäsionsprozessen unter Bedingungen, die die Betriebsumgebung repräsentieren. Ein aktueller Forschungsschwerpunkt unseres Fachbereiches liegt in den Untersuchungen der Deformationseigenschaften von Funktionsschichten auf Leichtmetalllegierungen, sowie in situ Untersuchungen des Korrosionsverhaltens unter kombinierter korrosiver und mechanischer Beanspruchung mittels AFM. Durch die Integrierung eines Zug-Druckmoduls in den Probentisch des Rasterkraftmikroskops haben wir jetzt die Möglichkeit, verschiedene Materialien uniaxialen Umformversuchen mit bis zu 5 kN Kraft zu unterziehen. Dabei können unter anderem auch zyklische Belastungen genutzt werden, um Ermüdungsprozesse zu simulieren. Da die Messungen in situ ohne die De- und Remontage der Probe durchgeführt werden, ermöglicht der Aufbau nicht nur Messungen mit präziser Positionssteuerung, sondern auch die Untersuchung von Prozessen im elastischen Bereich, die für die Aufklärung der Mechanismen, die zu Ermüdungsversagen führen, entscheidend sind. Die Posterpräsentation wird detaillierte Informationen zum neuen AFM-Setup liefern und unsere aktuellen Ergebnisse zur Verformung dünner Schutzschichten auf AA2024-T3 zusammenfassen. T2 - Hybrid, Materials and Structures CY - Bremen, Germany DA - 18.04.2018 KW - Kelvinsondenkraftmikroskopie KW - Funktionelle Beschichtungen KW - Kombinierete korrosive und mechanische Beanspruchung KW - Lokale Korrosion KW - Delamination KW - Deformation PY - 2018 AN - OPUS4-46522 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Witt, Julia A1 - Almalla, Ahed A1 - Stepien, Daniel A1 - Özcan Sandikcioglu, Özlem T1 - Multilayer thin coatings for corrosion protection of AA2024-T3 aluminium alloy N2 - The performance of adhesively joined hybrid components relies strongly on the stability of the adhesive-material interface. With the increasing utilization of multi-material structures in the automotive and aerospace industry, it is of great scientific and technical interest to understand the processes leading to adhesive failure and to develop novel strategies to increase corrosion and delamination resistance of adhesive joints. The aim of this study is to develop thin epoxy based films and their carbon nanofiller loaded composites on aluminium alloy AA2024-T3 and to investigate their interfacial stability under corrosive and coupled corrosive-mechanical load. Spin coating was used for the layer-by-layer deposition of poly[(o-cresyl glycidyl ether)-co-formaldehyde] and poly-(ethylenimine) bi-layers. Carbon nanofillers are introduced either by mixing into the coating components or in between individual layers. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) analysis was performed to investigate the porosity and water uptake of the model films, respectively. Atomic force microscopy (AFM) results indicated a very homogeneous and dense film with low surface roughness. The bi-layer thickness ranged between 30 to 40 nm. Electrochemical measurements show a higher corrosion resistance with the increase of the bi-layer number. The main novelty of this contribution is the in-situ AFM investigations under coupled corrosive-mechanical load. For this purpose, a tensile module capable of uniaxial stretching and compression with up to 5 kN force was integrated into the AFM stage. Stretching experiments were performed to investigate the mechanical properties and adhesion of the films, as well as structural changes of the film morphology during uniaxial deformation. The contribution will provide detailed information on the new AFM setup and summarize our results on the stability of model epoxy and nanocomposite films on AA2024-T3. T2 - EURADH 2018 CY - Lisbon, Portugal DA - 05.09.2018 KW - Electrochemical Empedance Spectroscopy (EIS) KW - Scanning Kelvin Probe Force Microscopy (SKPFM) KW - Corrosion KW - Delamination KW - Aluminium KW - Epoxide PY - 2018 AN - OPUS4-46513 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -