TY - CONF A1 - Duarte, Larissa A1 - Zerbst, Uwe A1 - Madia, Mauro T1 - Investigation on the influence of different testing methods and parameters on the determination of fatigue crack growth data N2 - The correct determination of fatigue crack propagation data is of great importance for the damage tolerance design of engineering components, especially with regard to the calculation of residual lifetime and the establishment of inspection intervals. The fatigue crack propagation threshold Δ𝐾th, in this respect, is a crucial input parameter for simulating crack growth, since it corresponds to the stress intensity factor range at which a non-growing crack starts to propagate. However, the experimental determination of Δ𝐾th, as well as its application, is still confronted with few issues related among others to the load ratio (R) dependency of Δ𝐾th, the testing procedure, and environmental effects. These can lead to large scatter and significant errors in the prediction of component failure. In this context, the use of the intrinsic fatigue crack propagation threshold Δ𝐾th,eff in component assessment is a promising alternative, since it does not depend on a number of factors that affect Δ𝐾th, but only on the elastic properties (𝐸-modulus) and the lattice (Burger’s vector ‖𝑏‖) of the material. The aim of the present work is therefore to investigate different experimental procedures for the determination of Δ𝐾th,eff, namely: (a) conventional load reduction (LR) procedures, (b) the 𝐾max procedure and (c) compression pre-cracking load reduction and constant amplitude (respectively CPLR and CPCA) methods. Furthermore, the determination of Δ𝐾th has been carried out varying some testing parameters, such as test frequency, Δ𝐾 at the beginning of the crack propagation test (Δ𝐾0) and stress ratio (R). The results are statistically analyzed and a discussion about the use of Δ𝐾th and Δ𝐾th,eff for the component fatigue assessment is presented. T2 - 6th. International Virtual Conference of Engineering Against Failure CY - Online meeting DA - 23.06.2021 KW - Crack closure KW - Damage tolerance assessment KW - Residual lifetime KW - Intrinsic fatigue crack propagation threshold PY - 2021 AN - OPUS4-52899 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Duarte, Larissa A1 - Madia, Mauro A1 - Zerbst, Uwe A1 - Schönherr, J. A. A1 - Geilen, M. B. A1 - Klein, M. A1 - Oechsner, M. T1 - Recent developments in the determination of fatigue crack propagation thresholds N2 - The impact of crack closure and environmental effects on the experimental determination of the fatigue crack propagation threshold is a major problem for the assessment of cyclically loaded components, especially at low stress ratios 𝑅. In this work, the influence of the experimental procedure and air humidity on d𝑎∕d𝑁 − 𝛥𝐾 data at different 𝑅 is discussed. Unlike the results at 𝑅 = −1, the threshold values obtained at 𝑅 ≈ 0.8, i.e. under negligible crack closure levels, show a very small scatter band regardless of the variation of the test parameters and environmental conditions. KW - Fatigue crack propagation threshold KW - Component assessment KW - Crack closure KW - Environmental effects KW - Testing parameters PY - 2022 U6 - https://doi.org/10.1016/j.ijfatigue.2022.107131 SN - 0142-1123 VL - 164 SP - 1 EP - 15 PB - Elsevier Ltd. AN - OPUS4-55403 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zerbst, Uwe A1 - Madia, Mauro T1 - Analytical flaw assessment N2 - The paper provides a review on analytical flaw assessment methods with the focus on fracture under monotonic loading and fatigue crack propagation. The first topic comprises linear elastic as well as elastic-plastic fracture mechanics approaches. It essentially follows their historical development. Topics which are separately discussed are reference/Limit loads, the treatment of secondary stresses, strength mismatch, constraint, unstable crack propagation (monotonic R-curve analyses) and statistical aspects. With respect to fatigue crack propagation the analytical treatment of crack closure and constraint and the Determination of the cyclic elastic-plastic crack driving force is discussed. Finally, cyclic Rcurve analyses are briefly addressed. KW - Monotonic and cyclic crack driving force KW - Secondary stresses KW - Strength mismatch KW - Constraint KW - Crack closure KW - R-curve analysis PY - 2018 U6 - https://doi.org/10.1016/j.engfracmech.2017.12.002 SN - 0013-7944 SN - 1873-7315 VL - 187 SP - 316 EP - 367 PB - Elsevier AN - OPUS4-44234 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Madia, Mauro A1 - Zerbst, Uwe A1 - Beier, T. A1 - Schork, B. T1 - The IBESS model – Elements, realisation and validation N2 - The work presents the procedure developed within the German research project IBESS, which allows for the fracture mechanics-based prediction of the fatigue strength of welded joints under constant amplitude loading. Based on the experimental observations of the crucial failure mechanisms, the approach focuses on the short crack propagation, where elastic-plastic fracture mechanics and the build-up of closure effects must be considered as well as the variability of the local geometry at the weld toe and the modelling of multiple crack interaction. Analytical solutions are provided for the approximation of the through-thickness stress profiles at the weld toe and for the determination of the crack driving force in the form of a plasticity-corrected stress intensity factor range ∆K_p. Proposals for the determination of the initial crack size and the crack closure factor are also included. The approach is validated against a large number of experimental data, which comprises fatigue tests on individual cracks monitored by heat tinting and beach-marking techniques, as well as stress life curves. Three kinds of welded joints, two steels of significant different strengths and three stress ratios are considered. The results show that the procedure provides good estimations of the statistical distribution of the fatigue strength of welded joints both for the finite and infinite life regime. Furthermore, the predictions are compared with available benchmark data for structural steels. KW - Welded joints KW - Life prediction KW - Fatigue crack growth KW - Short cracks KW - Crack closure PY - 2018 U6 - https://doi.org/10.1016/j.engfracmech.2017.08.033 SN - 0013-7944 SN - 1873-7315 VL - 198 SP - 171 EP - 208 PB - Elsevier AN - OPUS4-46852 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Duarte, Larissa A1 - Madia, Mauro A1 - Zerbst, Uwe T1 - Fatigue assessment procedure based on effective crack propagation data and cyclic R-curve N2 - Fracture mechanics-based methods can be applied to the fatigue assessment of mechanical components containing defects or cracks subjected to cyclic loading. The knowledge of the crack growth behavior for short and long cracks enables the determination of both finite and infinite life regimes. Nevertheless, a first problem arises from the empirical determination of the fatigue data, which vary according to the test conditions, e.g., the test method, frequency and the stress ratio R. This is due to crack closure and further environmental phenomena affecting crack propagation behavior. A second issue regards the lack of standard experimental procedures for the determination of the fatigue crack propagation threshold ΔKth dependency on the crack size. This is problematic, since ΔKth increases with the build-up of the closure effects in the short crack regime and its inaccurate experimental determination leads to large deviations in the assessment and, even more critical, to non-conservative predictions. Aiming at providing more reliable and safer assessment procedures, the present work proposes a method based on effective crack growth data obtained at high stress ratios (R ≈ 0.8). A short-crack model based on the cyclic R-curve and CPLR data is employed for describing the development of the closure effects. The predictions are compared to established methods and validated by experimental tests. T2 - Fatigue 2022+1 CY - Hiroshima, Japan DA - 06.11.2023 KW - Component assessment KW - Fatigue crack propagation KW - Fatigue threshold KW - Crack closure KW - Cyclic R-curve PY - 2023 AN - OPUS4-58842 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -