TY - CONF A1 - Zaghdoudi, Maha A1 - Weber, Mike A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - Numerical Modelling of Compression Stress Relaxation and Compression Set of Elastomer O-Ring During Aging N2 - Elastomer seals are used in many industrial applications due to their excellent mechanical properties at a wide range of temperatures. Their high versatility and recovery potential under several load conditions make them well suitable for the application in containers designed for transport, storage and/or disposal of radioactive materials. In containers for low and intermediate level radioactive waste, elastomer seals are used as barrier seals, and as auxiliary seals in storage and transportation casks (dual purpose casks) for heat generating radioactive waste, such as spent fuel and high-level waste. While a seal exchange at defined intervals is typical in many conventional applications, it is impossible or at least hard to perform when principles of minimization of radiation exposure have to be considered and prohibit an unnecessary cask handling. An extensive knowledge of the change of the elastomer’s properties during aging and the availability of reliable end-of-lifetime criteria to guarantee the permanent safe enclosure of the radioactive material is mandatory. As BAM is involved in most of the national cask licensing procedures and in the evaluation of cask-related long-term safety issues, great efforts have been already made and are still planned to scientifically support this task. Compression stress relaxation and compression set were identified as key indicators of elastomer long-term performance and quantitatively investigated in comprehensive test programs. Among other representative types of elastomers, specimens made from ethylene propylene diene rubber (EPDM) were tested before, during and after aging to capture the most important of their complex mechanical properties. In the presented study, exemplary results were used to simulate the compression stress relaxation and the compression set of elastomer O-rings during aging. Regarding the influence of temperature, the time-temperature superposition principle is applied in the relaxation analysis of elastomer O-rings. The proposed model is implemented in the commercial finite element software ABAQUS/Standard® [1] with a sequential temperature displacement coupling. Numerical results match the experimental compression stress relaxation measurements well. The prediction of compression set values after long-term aging shows a relatively good agreement with the experimental results. Nevertheless, all input parameters derived from the specimen tests, additional assumptions concerning boundary conditions and modeling strategy are discussed with regard to the identified slight discrepancies. The possibility to extend the finite element model to represent the O-ring seal’s ability to recover after a (fast) partial release is taken into account. T2 - ASME 2020 Pressure Vessels & Piping Conference (PVP2020) CY - Online meeting DA - 03.08.2020 KW - Compression Set KW - O-ring KW - Simulation KW - Sequential analysis KW - Ageing KW - stress relaxation PY - 2020 SN - 978-0-7918-8388-4 DO - https://doi.org/10.1115/PVP2020-21270 SP - PVP2020-21270 PB - ASME AN - OPUS4-51490 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zaghdoudi, M. A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - Oxidative ageing of elastomers: experiment and modelling N2 - During an extensive test programme at the Bundesanstalt für Materialforschung und prüfung, material property changes of EPDM O-rings were investigated at different ageing times and two ageing temperatures of 125 ◦ C and 150 ◦ C. To exclude possible diffusion-limited oxidation (DLO) effects that can distort the data, IRHD microhardness measurements were taken over the cross section of compressed O-rings. Continuous stress relaxation measurements were taken on samples free of DLO effects. The additional effect of physical processes to irreversible chemical ones during a long-term thermal exposure is quantified by the analysis of compression set measurements under various test conditions. By combining the different experimental methods, characteristic times relative to the degradation processes were determined. On the basis of experimental data, a microphysically motivated model that takes into account reversible and irreversible processes was developed. The parameter identification strategy of the material model is based on our experimental investigations on homogeneously aged elastomer O-rings. The simulated results are in good agreement with the experiments. KW - Compression Set KW - Compression stress relaxation KW - Modelling KW - Ageing KW - Microhardness PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-609332 DO - https://doi.org/10.1007/s00161-022-01093-9 VL - 36 SP - 289 EP - 297 PB - Springer Nature AN - OPUS4-60933 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zaghdoudi, Maha T1 - Numerical modelling of compression stress relaxation and compression set of elastomer O-rings during aging N2 - Elastomer seals are used in many industrial applications due to their excellent mechanical properties at a wide range of temperatures. Their high versatility and recovery potential under several load conditions make them well suitable for the application in containers designed for transport, storage and/or disposal of radioactive materials. In containers for low and intermediate level radioactive waste, elastomer seals are used as barrier seals, and as auxiliary seals in storage and transportation casks (dual purpose casks) for heat generating radioactive waste, such as spent fuel and high-level waste. While a seal exchange at defined intervals is typical in many conventional applications, it is impossible or at least hard to perform when principles of minimization of radiation exposure have to be considered and prohibit an unnecessary cask handling. An extensive knowledge of the change of the elastomer’s properties during aging and the availability of reliable end-of-lifetime criteria to guarantee the permanent safe enclosure of the radioactive material is mandatory. As BAM is involved in most of the national cask licensing procedures and in the evaluation of cask-related long-term safety issues, great efforts have been already made and are still planned to scientifically support this task. Compression stress relaxation and compression set were identified as key indicators of elastomer long-term performance and quantitatively investigated in comprehensive test programs. Among other representative types of elastomers, specimens made from ethylene propylene diene rubber (EPDM) were tested before, during and after aging to capture the most important of their complex mechanical properties. In the presented study, exemplary results were used to simulate the compression stress relaxation and the compression set of elastomer O-rings during aging. Regarding the influence of temperature, the time temperature superposition principle is applied in the relaxation analysis of elastomer O-rings. The proposed model is implemented in the commercial finite element software ABAQUS/Standard® [1] with a sequential temperature displacement coupling. Numerical results match the experimental compression stress relaxation measurements well. The prediction of compression set values after long-term aging shows a relatively good agreement with the experimental results. Nevertheless, all input parameters derived from the specimen tests, additional assumptions concerning boundary conditions and modeling strategy are discussed with regard to the identified slight discrepancies. The possibility to extend the finite element model to represent the O-ring seal’s ability to recover after a (fast) partial release is taken into account T2 - ASME 2020 Pressure Vessels & Piping Conference (PVP2020) CY - Online meeting DA - 03.08.2020 KW - Stress relaxation KW - Ageing KW - Compression Set KW - O-ring KW - Sequential analysis KW - Simulation PY - 2020 AN - OPUS4-52135 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -