TY - GEN A1 - Herrmann, Stefan T1 - Charakterisierung zweier monoklonaler Antikörper zur Detektion von Sprengstoffen T2 - Masterarbeit N2 - In 2019 over 30 000 people were killed or injured by explosions caused by explosives like TNT, PETN, HMX and RDX. Therefore, highly sensitive assays for the detection of TNT are needed. In this study we compared two commercially available TNT antibodies: A1.1.1 and EW75C with a highly optimized indirect competitive ELISA based on a BSA-TNA conjugate. As a result, a precision profile for both antibodies was determined with a LOD of 170 pmol L-1 for the clone A1.1.1 and a LOD of 3,2 nmol L-1 for the clone EW75C. The measurements showed that the clone A1.1.1 is a highly sensitive antibody for the detection of TNT while the clone EW75C does show medium performance at most. In the cross-reactivity characterization of both antibodies many substances, closely related to the structure of TNT were tested. Both antibodies showed strong cross reactivity with trinitroaniline and trinitrobenzene. For the clone A1.1.1, which is known to originate from immunization of mice with an TNP-glycine-KLH conjugate, this has to be expected. Interestingly the clone EW75C, which was not characterized yet, showed similar behavior. This suggests a TNA-conjugate as immunogen for the EW75C antibody as well. None of both antibodies showed cross-reactions to the high explosives PETN, HMX and RDX. Also, the cross-reactions of nitro musks with the antibodies were investigated. Despite their prohibition, nitro musks are still used in Asia especially and are particularly popular in India. The overall superior clone A1.1.1 showed a significant cross-reactivity to musk ambrette. For practical reasons the influence of musk ambrette on this assay when used in natural environment should be investigated. In further experiments, the highly sensitive TNT antibody A1.1.1 was digested with papain to obtain monovalent Fab-fragments. Due to its high stability against the digestion, a custom protocol for the IgG1 subclass of mice, to which the clone A1.1.1 belongs, was developed, resulting in a quantitative digestion of the intact antibody to Fab fragments. The success of the digestion was determined with MALDI-TOF-MS and SDS-PAGE. It was shown that this protocol worked for many different antibodies of IgG1 subclass as well. KW - TNT KW - Trinitrotoluol KW - Nitroaromaten KW - Nitromoschus KW - Duftstoffe KW - ELISA KW - Immunoassay KW - Antibody KW - Explosives KW - Klon A1.1.1 KW - Klon EW75C KW - Fab Fragment KW - Kreuzreaktion KW - Crossreactivity KW - Precision Profile KW - Präzisionsprofil KW - Affinity KW - Affinitätskonstante KW - IC50 PY - 2020 SP - 1 EP - 113 PB - Hochschule für Technik und Wirtschaft Berlin - htw CY - Berlin AN - OPUS4-54556 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Gabler, Mariella T1 - Development of an affinity-based method for the site-selective synthesis of antibody-drug-conjugates T2 - Masterarbeit N2 - For the site-selective synthesis of ADCs, a variety of obstacles must be overcome. Those include designing bifunctional affinity peptides with reasonably low 𝐾𝑑-values that couple to the mAb in a site-selective manner. These peptides should also include a functional group that links the payload to the mAb under mild conditions without adversely affecting it. The bioconjugation between peptide and antibody and the linker between peptide and payload must be stable and durable to provide safety when used for medical purposes. The usage of metals and organic solvents should be minimized. Within the project, new types of functionalized affinity peptides were designed, and their affinity towards the Fc-fragment was determined. KW - Antibody drug conjugate KW - ADC KW - Human antibody KW - Peptide KW - Linker KW - Toxin KW - Payload KW - Monomethyl Auristatin E KW - MMAE KW - DM1 KW - Click chemistry KW - Copper-catalyzed KW - SDS-PAGE KW - HPLC KW - Trastuzumab KW - Herceptin KW - SPR KW - MALDI-TOF-MS KW - Mertansine KW - Site-selective bioconjugation KW - Affinity PY - 2021 SP - 1 EP - 100 PB - Humboldt-Universität zu Berlin CY - Berlin AN - OPUS4-54519 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kaufmann, Jan Ole A1 - Brangsch, J. A1 - Kader, A. A1 - Saatz, Jessica A1 - Mangarova, D. B. A1 - Zacharias, M. A1 - Kempf, W. E. A1 - Schwaar, T. A1 - Wilke, Marco A1 - Adams, L. C. A1 - Möckel, J. A1 - Botnar, R. M. A1 - Taupitz, M. A1 - Mägdefessel, L. A1 - Traub, Heike A1 - Hamm, B. A1 - Weller, Michael G. A1 - Makowski, M. R. T1 - ADAMTS4-specific MR-probe to assess aortic aneurysms in vivo using synthetic peptide libraries JF - Nature Communications N2 - The incidence of abdominal aortic aneurysms (AAAs) has substantially increased during the last 20 years and their rupture remains the third most common cause of sudden death in the cardiovascular field after myocardial infarction and stroke. The only established clinical parameter to assess AAAs is based on the aneurysm size. Novel biomarkers are needed to improve the assessment of the risk of rupture. ADAMTS4 (A Disintegrin And Metalloproteinase with ThromboSpondin motifs 4) is a strongly upregulated proteoglycan cleaving enzyme in the unstable course of AAAs. In the screening of a one-bead-one-compound library against ADAMTS4, a low-molecular-weight cyclic peptide is discovered with favorable properties for in vivo molecular magnetic resonance imaging applications. After identification and characterization, it’s potential is evaluated in an AAA mouse model. The ADAMTS4-specific probe enables the in vivo imaging-based prediction of aneurysm expansion and rupture. KW - Peptide KW - Peptide library KW - OBOC library KW - Combinatorial chemistry KW - Peptide aptamers KW - Binding molecule KW - Affinity KW - Synthetic peptides KW - Contrast agent KW - Magnetic resonance imaging KW - One-bead-one-compound library KW - On-chip screening KW - Lab-on-a-chip KW - MALDI-TOF MS KW - SPR KW - Surface plasmon resonance KW - Alanine scan KW - Fluorescence label KW - MST KW - Docking KW - Chelate PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-560930 DO - https://doi.org/10.1038/s41467-022-30464-8 VL - 13 IS - 1 SP - 1 EP - 18 PB - Springer Nature Limited CY - Heidelberg AN - OPUS4-56093 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -