TY - CONF A1 - Rabe, Sebastian A1 - Sánchez-Olivares, Guadalupe A1 - Schartel, Bernhard T1 - Rummaging through industrial waste: Natural fibers in flame retarded thermoplastic starch biocomposites N2 - Thermoplastic starch polymer blends as biodegradable materials are well known and used mainly as packaging material. In order to exploit new application fields for these materials, additional properties such as flame retardancy or increased mechanical strength are required. This work focuses on the flammability and fire behavior of a thermoplastic starch/polyester blend reinforced with natural fibers derived from Mexican industry processes wastes, such as keratin fibers from the tannery industry or coconut fibers[1]. Different fiber contents as well as combinations of varying contents of aluminum trihydroxide, expandable graphite or ammonium polyphosphate were tested in LOI, UL94, cone calorimeter and TG-FTIR in order to investigate and assess the concentration dependence of the fibers and flame retardants as well as synergistic effects between both components. In combination with ammonium polyphosphate, the coconut fibers induce a synergistic effect by reinforcing the char residue and creating a more stable heat barrier during forced flaming combustion in the cone calorimeter. Synergism is also observed in the oxygen test. The recycling of otherwise wasted material is a true challenge in material development, thus this work is a first step in the direction of sustainable and biodegradable materials. T2 - Second International Conference on ECO-friendly Flame Retardant Additives and Materials (ECOFRAM) CY - Metz, France DA - 28.03.2018 KW - Biocomposite KW - Natural fibres KW - Industry processes wastes KW - Flammability KW - Sustainable PY - 2018 AN - OPUS4-44658 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard A1 - Battig, Alexander A1 - Garfias González, K. I. A1 - Gleuwitz, F. R. A1 - Sánchez Olivares, G. T1 - Non-vegan flame-retardant (adjuvants in) biocomposites N2 - Emanating from developing flame retarded biocomposites, we have proposed renewable natural fibers (including keratin) taken from industrial waste as an authentic sustainable approach. More recently, we have investigated non-vegan flame retardant approaches. This paper loves to give you an insight into our ongoing projects on biogenic industrial wastes like leather, bone meal, and insects. Materials were characterized multi-methodically, flame retardant modes of action quantified, decomposition mechanism proposed, and synergisms explained. Considering the large quantities of leather waste (LW) in industrial-scale production, we underline LW as multifunctional bio-adjuvants. LW enhances the flame retardancy of poly(ethylene-vinyl acetate) (EVA) containing phosphorus flame retardants (P-FR). Products/by-products of the invertebrate and vertebrate farming, respectively, are promising bio-based adjuvants in flame retarded bio-epoxy thermosets. While the addition of bone meal yields the formation of an inorganic shield, protein-based powders from insects provide an intumescent behavior. In combination with a P-FR superior charring and self-extinguishing are obtained. Acknowledgement: In part of this work was supported by the Volkswagen Foundation grant “Experiment!” No. 97437. T2 - Fire and Polymers, workshop, ACS Division of Polymer Chemistry CY - Napa, California, US DA - 05.06.2022 KW - Fire behaviour KW - Renewable KW - Circular economy KW - Biocomposite PY - 2022 AN - OPUS4-55025 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gugin, Nikita A1 - Schwab, Alexander A1 - Villajos Collado, José Antonio A1 - Emmerling, Franziska T1 - Reactive extrusion of a model BSA@ZIF-8 biocomposite: a scalable, continuous and sustainable approach N2 - Metal-organic framework-based biocomposites (MOF-biocomposites) are promising materials for biosensing, biocatalysis, and delivery of biopharmaceuticals. One of the most studied MOFs for bioapplications is ZIF-8 (zeolitic imidazolate framework 8) due to its high surface area, high thermal and chemical stability, and low cytotoxicity. The conventional synthesis of ZIF-8-biocomposites called biomimetic mineralization includes mixing selected biomolecules 2-methylimidazole, and soluble Zn2+ source in water. Despite the high efficiency of the method, it does not allow for large-scale production and is restricted to hydrophilic biomolecules. Aimed at developing a scalable and versatile approach, we adapted our recently-reported ZIF-8 reactive extrusion for biocomposite production. We selected bovine serum albumin (BSA) as an inexpensive model biomacromolecule for the preparation of biocomposites. The synthesis of BSA@ZIF-8 was performed using a twin-screw extruder ZE 12 HMI (Three-Tec Gmbh) at a mild temperature of 40 °C. Automatic volumetric feeder ZD 12B (Three-Tec GmbH) was used to supply the reagent mixture consisting of 2-methylimidazole, zinc source, and BSA. To initiate the reaction, a catalytic amount of EtOH was added using a peristaltic pump BT-L (Lead Fluid, China). Powder X-Ray diffraction (PXRD), thermogravimetric analysis (TGA), FTIR, and N2 adsorption were used to characterize the extrudates. Highly crystalline and pure BSA@ZIF-8 with different BSA loadings was isolated after washing the extrudate with EtOH and sodium dodecyl sulfate. The EtOH feeding rate was optimized by following the protein encapsulation efficiency at a BSA mass fraction of 10%. A continuous extruder operation under optimized conditions showed good reproducibility and capability of producing biocomposites on the kilograms scale. These results provide highly valuable information for cheap and large-scale production of ZIF-8-based biocomposites. Due to the lack of restrictions on molecule size and solubility, our proof-of-concept study may significantly expand the selection of biomolecules for immobilization in ZIF-8, making the method applicable to various functional applications T2 - Tag der Chemie 2023 CY - Berlin, Germany DA - 05.07.2023 KW - Biocomposite KW - MOFs KW - Reactive extrusion KW - Zeolitic imidazolate framework PY - 2023 AN - OPUS4-58949 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard T1 - Sustainability Finding its Way into Flame Retardancy: Food for Thought between Fake Fiction and Future N2 - Main message: Sustainability, or in other words, exploiting environmental conservation for the economic welfare and prosperity for all, would revolutionise the plastics industry were it to become predominant practice as a linear, fossil-fuel–based economy is switched to a carbon circular economy. Food for though is given by dint of a critical overview of the current trends in sustainable flame-retardant polymeric materials. Introduction: Transforming the plastics industry into a carbon circular economy over the next 30 years requires an immediate revolution entailing the development of cutting-edge materials and the planning of future industrial production plants. Hence, the innovative field of flame-retardant polymeric materials should lend its strength to drive this challenge. Visionary solutions are proposed to inspire us, while the implementation of economically feasible concepts can take us forward into the future. Experimental The synthesis, processing, polymer analysis, thermal analysis, and investigation of fire behaviour from our own research are performed according to the state of the art, mostly in accordance with the pertinent ISO standards. Indeed, some of our equipment is part of the accredited lab; for the other methods we fulfil equivalent quality standards in terms of maintenance, calibration, participation in round robins, etc. Work steps such as the synthesis or preparation of new materials are usually outsourced or done with partners that have the relevant core competence. The talk also presents examples from other groups whose experimental is described in the corresponding scientific papers. Results and Discussion An overview of current trends towards producing sustainable, flame-retardant polymeric materials is presented, using examples from the literature and by sketching our own projects performed in recent years. The examples are structured along a common theme leading from the use of old and new natural materials with some intrinsic flame retardancy, via flame-retardant biopolymers and biocomposites, to using renewable sources for flame retardants with the objective of exploiting natural sources available as industrial waste streams. Natural flame retardants and adjuvants are highlighted, although the status of most may be assessed as merely motivating our vision. Nevertheless, there are natural material streams finding their way into polymer mass production as fillers, adjuvants, polymers, or renewable educt sources. Natural substances originating from industrial waste streams open the door to sustainable solutions, because they are often available at low cost and avoid competition for land with farming or virgin forests. Aside from this main topic, remarks will address the recycling of flame-retarded polymeric materials; vitrimers are mentioned as a potential material for recyclable thermosets. At the end of the day, only convincing property profiles will prevail both for exploiting renewable sources and circular design, including cost effectiveness, sufficient availability, consistent quality, processibility, mechanical properties, and flame retardancy. However, sustainability must not be merely tolerated as an additional demand, but should instead be recognized as a solution, because sustainability aspires to ensure our economic welfare now and in the future. Acknowledgement: The examples shown from own project were supported by funding grants: BMBF WTZ: 01DN16040, DFG Scha 730/19-1, VW-Stiftung: Experiment No: 97437, DFG Scha 730/20-1, BMBF KMU Innovativ 031B1289B. T2 - 19th European Meeting on Fire Retardant Polymeric Materials (FRPM23) CY - Dübendorf, Switzerland DA - 26.06.2023 KW - Renewable KW - Biocomposite KW - Sustainable KW - Circular economy KW - Natural PY - 2023 AN - OPUS4-57815 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -