TY - CONF A1 - Kauss, N. A1 - Heyn, A. A1 - Rosemann, Paul T1 - How to Detect Sensitivity on Aged Lean-Duplex Stainless Steel With Electrochemical Methods N2 - The influence of isothermal ageing on microstructure, sensitisation and pitting corrosion resistance of the lean duplex stainless steel (LDSS) X2CrNiN23-4 was investigated with various electrochemical methods. The aging at 600 °C (from 0.1 h up to 20 h) lead to the formation of precipitations at the ferrite-ferrite (α/α) and ferrite-austenite (α/γ) grain boundaries, inducing sensitisation due to chromium depletion. The degree of sensitisation was evaluated with the double loop electrochemical potentiokinetic reactivation method (DL-EPR) according to ASTM G108 and correlated with critical pitting potentials (Epit) as well as critical pitting temperature (CPT) measured in an electrolyte according to ASTM G48 using electrochemical noise. Up to an ageing time of 1 h, the sensitisation did rise significantly, stabilising at a nearly constant level with a slight drop at 20 h. This behaviour correlated perfectly with the potentiodynamically determined pitting potentials Epit and sensitisation. The CPT showed a higher sensitivity at short ageing times compared to the DL-EPR and Epit. Finally, the KorroPad method was applied to visualise the sensitisation induced reduction of pitting corrosion resistance. The “KorroPad” is an agar-based gel-electrolyte containing 0.1 mol/l sodium chloride (NaCl) and 0.1 mol/l potassium ferricyanide III (K3[Fe(CN)6]), invented at the Federal Institute of Materials Research and Testing in Berlin (Germany) to detect surfaces of stainless steel prone to pitting corrosion. The standard configuration of the KorroPad showed no differentiation for the various aging conditions. Increasing the concentration of both NaCl and potassium ferrocyanide III to 0.5 M shifts the detection limit of the KorroPad method to stainless steels with higher corrosion resistance, producing the same trends detected by standard electrochemical pitting corrosion values (Epit, CPT) and sensitisation (DL-EPR). By that, the KorroPad method was successfully adjusted to the lean-duplex stainless steel X2CrNiN23-4, enabling short-time testing to detect sensitization. T2 - Electrochemical Methods in Corrosion Research 2018 CY - Cambridge, UK DA - 22.07.2018 KW - Corrosion testing KW - Duplex stainless steels KW - Corrosion KW - KorroPad KW - Pitting corrosion KW - EPR KW - Electrochemical noise KW - Stainless steel PY - 2018 AN - OPUS4-45615 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Quackatz, Lukas A1 - Griesche, Axel A1 - Kannengießer, Thomas A1 - Treutler, Kai A1 - Wesling, Volker T1 - Analyse der chemischen Konzentrationen während des WIG-Schweißens von Duplexstählen mittels Laser induzierter Plasmaspektroskopie (LIPS) N2 - Die Kombination aus hoher Korrosionsbeständigkeit und guten mechanischen Eigenschaften von Duplexstählen (DSS) ist auf ihre chemische Zusammensetzung und das ausgewogene Phasenverhältnis von Ferrit (α) und Austenit (γ) zurückzuführen. Viele industrielle Anwendungen erfordern eine stoffschlüssige Verbindung von DSS. Das Wolfram-Inertgas-Schweißen (WIG) ist relativ einfach zu handhaben, benötigt nur wenig Platz und ermöglicht ein automatisiertes Schweißen, mit sehr hoher Reproduzierbarkeit und ist daher hervorragend zum Schweißen von DSS. Während der Erstarrung dieser Dualphasenstähle kann es zu kritischen Phasenverhältnissen von α und γ kommen, was zu Erstarrungsrissen, Korrosionsanfälligkeit, geringerer Duktilität und kritischen Festigkeitswerten führt. Um die gewünschten Werkstoffeigenschaften zu erhalten, muss daher die α/γ-Verteilung zuverlässig vorhergesagt werden. Dies geschieht in der Regel mit Hilfe des WRC1992-Diagramms. Die Vorhersagegenauigkeit des Ferritgehalts in diesem Diagramm ist jedoch meist nicht genau genug und muss daher optimiert werden. Daher ist es notwendig, selbst kleinste Veränderungen in der chemischen Zusammensetzung des Schweißguts idealerweise während des Schweißens zu überwachen. Dies wird in diesen Experimenten mit Hilfe der laser-induzierten Plasmaspektroskopie (LIBS) durchgeführt. Ein großer Vorteil dieser Technik ist die hochgenaue zeit- und ortsaufgelöste Messung der chemischen Zusammensetzung während des Schweißens. In vorherigen Arbeiten wurde bereits die chemische Zusammensetzung im Schweißgut und der WEZ quantifiziert. In der präsentierten Untersuchung wird der Einfluss einzelner Elemente, wie Nb und Cu, auf das resultierende Schweißmikrogefüge untersucht. T2 - BMDK der Universität Magdeburg CY - Magdeburg, Germany DA - 05.07.2023 KW - LIBS KW - In situ measurement KW - WRC 1992 diagram KW - TIG welding KW - Duplex stainless steels PY - 2023 AN - OPUS4-57873 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Quackatz, Lukas A1 - Griesche, Axel A1 - Kannengießer, Thomas T1 - In situ investigation of chemical composition during TIG welding in duplex stainless steels using Laser-Induced Breakdown Spectroscopy (LIBS) JF - Forces in mechanics N2 - Many applications in industry require a material-to-material joining process of Duplex Stainless Steels (DSS). Therefore, it is essential to investigate the material’s properties during a welding process to control the weld quality. With the help of Laser-Induced Breakdown Spectroscopy (LIBS), the chemical composition during the Tungsten Inert Gas (TIG) welding process of DSS could be monitored in situ. The chemical composition could be quantitatively measured using pre-established calibration curves. Although the surface temperature and the welding plasma have a high influence on the spectral intensities, reliable composition measurements were possible. The concentration of alloying elements could be mapped during the TIG welding process. T2 - 2nd International Conference on Advanced Joining Processes CY - Sintra, Portugal DA - 21.10.2021 KW - LIBS KW - In situ measurement KW - WRC 1992 diagram KW - TIG welding KW - Duplex stainless steels PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-542026 DO - https://doi.org/10.1016/j.finmec.2021.100063 SN - 2666-3597 VL - 6 SP - 1 EP - 7 PB - Elsevier CY - Amsterdam AN - OPUS4-54202 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Quiroz, V. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Saldabilita di lamiere in acciaio inossidabile austenico ed austeno-ferritico ad alto contenuto di manganese con processo laser JF - Rivista Italiana della Saldatura N2 - Manganese alloyed stainless steels represent a cost-effective alternative to conventional CrNi- stainless steels due to strong fl uctuations of the market prices for nickel seen during the last years. In CrMnNi steels, nickel is partially replaced by lower-cost manganese and small amounts of nitrogen for stabilization of the austenitic phase. This also brings benefi ts regarding the mechanical properties, as it results in an increased material strength. Laser beam welding of such materials was investigated for direct comparison with Standard CrNi steels. Main emphasis was laid on fi nding adequate process parameters to achieve a stable welding process and obtain a good weld quality. Two different laser sources, a 4.4 kW Nd:YAG and a 5 kW CO2 laser, were used to weld 1.5 mm stainless steel sheets in continuous wave mode. A high-Mn austenitic (1.4376) and a lean duplex (1.4162) steel, as well as the standard austenitic (1.4301) and duplex (1.4362) grades were selected as test materials. Both butt and lap joint confi gurations were studied. Experiments were carried out systematically, varying the welding speed, laser power and focal point position in order to determine adequate process windows. The infl uence of the shielding gas type and fl ow rate on the process stability and the weld quality were investigated. The effects of weld edge preparation on the weld appearance and quality levels attained were also examined. The obtained welded joints were subjected to radiographic tests for detection of internal imperfections. Also a metallurgical characterization of the samples regarding the resulting phase composition or balance and hardness depending on the welding process parameters was conducted. Furthermore, tensile and potentiodynamic tests were performed to evaluate the mechanical and corrosion properties, respectively. The results provide an insight into the advantages and limitations of the laser beam welding process for joining high-manganese alloyed stainless steels. Conditions for the production of defect-free and corrosion-resistant welds having good mechanical properties could be determined. KW - Weldability KW - Austenitic stainless steels KW - Corrosion KW - CO2 lasers KW - Duplex stainless steels KW - Laser welding KW - Manganese KW - Mechanical properties KW - Shielding gases KW - YAG lasers PY - 2016 SN - 0035-6794 VL - 68 IS - 1 SP - 33 EP - 43 AN - OPUS4-38100 LA - ita AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rosemann, Paul A1 - Müller, C. A1 - Baumann, O. A1 - Modersohn, W. A1 - Halle, T. T1 - Einfluss der Oberflächennachbearbeitung von Schweißnähten auf die Korrosionsbeständigkeit des Duplexstahls 1.4062 N2 - Der nichtrostende Duplexstahl 1.4062 (X2CrNiN22-2) hat sich im Bauwesen als Werk-stoffalternative zu den nichtrostenden Austeniten etabliert. Die Korrosionsbeständigkeit von Schweißverbindungen aus 1.4062 wird, neben dem Grundwerkstoff, dem Schweißzu-satzwerkstoff und dem Schweißverfahren, auch sehr stark von der Oberflächennachbe-handlung der Schweißnahtbeeinflusst. Je nach zukünftigem Anwendungsbereich und geforderter Korrosionsbeständigkeit wird die Schweißnaht geschliffen, gebeizt, elektropo-liert oder gestrahlt, um die beim Schweißen entstandenen Anlauffarben zu entfernen. Gestrahlte Oberfläche sind in der industriellen Praxis häufig anzutreffen, da sie deutlich einfacher und kostengünstiger herzustellen sind als gebeizte oder elektropolierte Oberflä-chen. Die Auswahl des Strahlmittels bestimmt auch die Prozesskosten, wobei das Strah-len mit Korund effektiver als das Strahlen mit Glasperlen ist. In den letzten Jahren wurden korrosionsanfällige Oberflächen bei nichtrostenden Stählen beobachtet, wenn diese mit Korund geschliffen wurden. Daher wird nun auch beim Strahlen kritisch hinterfragt, ob Korund als Strahlmittel die Korrosionsbeständigkeit verändert. Diese Fragestellung wird im Vortrag beantwortet indem geschliffene, gebeizte, mit Korund gestrahlte und mit Glasperlen gestrahlte Schweißverbindungen vergleichend untersucht werden. Die Ergeb-nisse der Untersuchungen von den Strahlmitteln und den gestrahlten Oberflächen werden mit den Ergebnissen der KorroPad-Prüfung und der kritischen Lochkorrosionspotentiale korreliert. T2 - 19. Werkstofftechnisches Kolloquium der TU Chemnitz CY - Chemnitz, Germany DA - 16.03.2017 KW - Corrosion resistance KW - Welding KW - Duplex stainless steels KW - Pitting corrosion KW - Surface treatment PY - 2017 AN - OPUS4-39539 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rosemann, Paul A1 - Müller, C. A1 - Baumann, O. A1 - Modersohn, W. A1 - Halle, T. T1 - Influence of the post-weld surface treatment on the corrosion resistance of the duplex stainless steel 1.4062 JF - IOP Conf. Series: Materials Science and Engineering N2 - The duplex stainless steel 1.4062 (X2CrNiN22-2) is used as alternative material to austenitic stainless steels in the construction industry. The corrosion resistance of welded seams is influenced by the base material, the weld filler material, the welding process and also by the final surface treatment. The scale layer next to the weld seam can be removed by grinding, pickling, electro-polished or blasting depending on the application and the requested corrosion resistance. Blasted surfaces are often used in industrial practice due to the easier and cheaper manufacturing process compared to pickled or electro-polished surfaces. Furthermore blasting with corundum-grain is more effective than blasting with glass-beads which also lower the process costs. In recent years, stainless steel surfaces showed an unusually high susceptibility to pitting corrosion after grinding with corundum. For this reason, it is now also questioned critically whether the corrosion resistance is influenced by the applied blasting agent. This question was specifically investigated by comparing grinded, pickled, corundum-grain- and glass-bead-blasted welding seams. Results of the SEM analyses of the blasting agents and the blasted surfaces will be presented and correlated with the different performed corrosion tests (potential measurement, KorroPad-test and pitting potential) on welding seams with different surface treatments. T2 - 19th Chemnitz Seminar on Materials Engineering – 19. Werkstofftechnisches Kolloquium CY - Chemnitz, Germany DA - 16.03.2017 KW - Corrosion resistance KW - Welding KW - Duplex stainless steels KW - Pitting corrosion KW - Surface treatment PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-395374 DO - https://doi.org/10.1088/1757-899X/181/1/012019 SN - 1757-899X SN - 1757-8981 VL - 181 IS - Conference 1 SP - Article UNSP 012019, 1 EP - 9 PB - IOP Publishing CY - Bristol, UK AN - OPUS4-39537 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schroepfer, Dirk A1 - Stützer, J. A1 - Zinke, M. A1 - Jüttner, S. T1 - Studies on the pore formation in super duplex stainless steel welds N2 - When welding super duplex stainless steels a non-admissible pore formation can occur even if recommended processing guidelines are followed strictly. To investigate this phenomenon and to determine the influencing factors different claddings were produced using gas metal arc welding and submerged arc welding. The welding consumables, the shielding gas and the welding flux were varied. As shielding gases several mixtures, based on argon and 30 % helium, with various amounts of nitrogen, nitric oxide, carbondioxid and oxygen were applied. As welding flux agglomerated fluoride basic fluxes and aluminate fluoride basic fluxes were used. Different batches of the similar solid filler wire G 25 9 4 N L were used to produce the claddings on the base material UNS32750. To determine the pore formation X-ray examinations and microsections were used, to analyze the chemical composition of the claddings melt extractions and spectrometric examinations were applied. Additionally, the microhardness and the ferrite number were detected. The studies have shown the shielding gas, the welding flux and the filler metal possess a great influence on the pore formation. Even small variations in the chemical composition of the welding consumables lead to totally different results. In addition, the ferrite number and the chemical composition of the claddings depend strongly on the used gases and filler metals. T2 - IIW Intermediate Meeting, C-IIA CY - Madrid, Spain DA - 29.02.2016 KW - Cladding KW - Welding KW - Duplex stainless steels KW - Pore formation PY - 2016 AN - OPUS4-38786 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Sobol, Oded T1 - Hydrogen assisted cracking and transport studied by ToF-SIMS and data fusion with HR-SEM T2 - BAM-Dissertationsreihe N2 - For almost 150 years it is known that hydrogen has a deleterious effect on the mechanical properties of metallic components. Nowadays, the problem of hydrogen assisted degradation is highly relevant in energy related fields due to the massive use of steel as a structural component in these applications and its sensitivity to hydrogen. Since the discovery of hydrogen assisted cracking (HAC), researchers studied intensively and suggested possible explanations and mechanisms in order to define how hydrogen is affecting the material. In general, it is considered that hydrogen changes the mechanical properties more in terms of ductility (deformation capacities) than in strength (load capacities). Hydrogen concentration is one of three crucial factors in the degradation process, together with the microstructure of the material and the internal/external mechanical load. The relatively high concentration of hydrogen resulting in this loss of ductility can originate during production or before service (e.g. welding processes) and during service (i.e. catholically protected systems to eliminate corrosion processes in sour environments). In parallel to the theoretical work, tremendous efforts were, and are still, invested in searching for a proper method to elucidate, map and quantify the hydrogen in the microstructure, which is the basis for this work. For steels, the focus is mainly on the observations of diffusion processes and the interaction of hydrogen with the microstructure in regions with high local stresses/strains (for example around evolving cracks). The challenge for reaching this goal arises from the fact that accurate indication of hydrogen by means of position, unlike heavier atoms, can be made only by mass spectrometry or by interaction with another element (e.g. silver decoration, special coating and resonant nuclear reaction by nitrogen). In addition to this, the difficulty recording the hydrogen behavior while it rapidly diffuses through the material, leaving only the unpredicted failure, should be taken into account. Although using powerful characterization methods, models and computational simulations, the key to defining the mechanisms behind HAC is still under debate and not fully understood. The relationship between material and hydrogen is determined by three factors, i.e., the material structure and microstructure – determining the physical properties, the mechanical load applied on the material and the hydrogen concentration. It is well known that in order to have a complete definition of HAC these three factors must be examined locally with the minimal scale and the maximal resolution reachable. The major gap is the lack in such a characterization method or a technique by which one has the ability to detect and observe the hydrogen in the metallic microstructure. The commonly used techniques nowadays are capable of characterization of the microstructure without the ability to observe the hydrogen distribution. Global hydrogen concentration and localized hydrogen observation are possible by some techniques which are incapable of indicating a change in the structure or microstructure therefore a comprehensive overview can be gained only by combining several methods. In the presented research, secondary ion mass spectrometry (SIMS) was adopted as the main tool to detect and locally map the hydrogen distribution in two types of duplex stainless steel grades: EN 1.4462 (standard 2205 duplex stainless steel) and EN 1.4162 (2101 lean duplex stainless steel). The term duplex stainless steel (DSS) refers to the austenitic-ferritic microstructure of the steel where the combination of physical and mechanical properties of the two phases is achieved. The DSS was selected as a case study for this work due to the wide use of this grade in many energy and the lack of knowledge on hydrogen behavior in two-phase containing microstructures. ToFSIMS was exploited in-situ and ex-situ in three experimental approaches during or following an electrochemical charging procedure. This type of hydrogen charging was selected as it simulated a procedure of cathodic protection of most sub-water oil and gas extraction and delivery systems. The experimental procedures were: 1. Ex-situ charging followed by ToF-SIMS imaging for basic understanding of hydrogen distribution. 2. Ex-situ charging followed by in-situ mechanical loading to obtain information on hydrogen behavior around a propagating crack. 3. In-situ permeation of hydrogen through a steel membrane inside the ToF-SIMS to obtain information on diffusion behavior of hydrogen in a two-phase microstructure. The comprehensive view of the effect of hydrogen on steel was gained by using supplementary methods, such as high resolution scanning electron microscopy (HR-SEM), focused ion beam (FIB) and electron back-scattered diffraction (EBSD). The state of the art in this work lies in applying both: in-situ experimental approaches and data treatment of the ToF-SIMS raw data. The data treatment includes the combination of data from several sources (data fusion). The results for the ex-situ charging followed by static sample imaging and data fusion showed that when the analyzed surface is directly exposed to the electrolyte the degradation is pronounced differently in the ferrite, austenite and interface. The degradation mechanisms in the ferrite and austenite were reflected by the formation of cracks on the surface of both, where a high concentration of hydrogen was obtained. This result supports the assumption that hydrogen is attracted to highly deformed regions. The advantage of using in-situ charging/permeation in comparison to ex-situ charging is that the effect of hydrogen on the ferrite and austenite phases when the hydrogen is evolving from within the microstructure is realized, in comparison to when the analyzed surface is initially exposed directly to the electrolyte. In both experiments the ferrite was observed as a fast diffusion path for the hydrogen. The faster diffusion of hydrogen through the ferrite is expected due to the higher diffusion coefficient, however, a direct proof for the diffusion sequence in this scale was never shown. Most significant results were achieved by the ‘core’ experiments of this research. These experiments included the design of a novel dynamic mechanical loading device to apply an external load during SIMS imaging of a hydrogen precharged-notched sample. For the first time it was shown that plastic deformation induced by applying a mechanical load is resulting in a redistribution of hydrogen locally around the notch. T3 - BAM Dissertationsreihe - 160 KW - Duplex stainless steels KW - Hydrogen assisted cracking KW - Time-of-Flight secondary ion mass spectrometry KW - Data fusion PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-447331 SN - 1613-4249 VL - 160 SP - I EP - 180 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-44733 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -