TY - CONF A1 - Weltschev, Margit A1 - Otremba, Frank A1 - Sklorz, Christian A1 - Rehfeldt, Rainer T1 - Impact of biocomponents in the fuel and heating oil on the compatibility of fluorocarbon rubber under compressed conditions N2 - Materials compatibility is a major concern whenever the fuel composition is changed. The question arises of whether sealing materials are resistant to fuels with bioethanol and biodiesel (rapeseed oil fatty acid methyl ester). Previous research considered the resistance of frequently used sealing materials such as FKM (fluorocarbon rubber), FVMQ (methyl-fluoro-silicone rubber), VMQ (methyl-vinyl-silicone rubber), EPDM (ethylene-propylene-diene rubber), CR (chloroprene rubber), CSM (chlorosulfonated polyethylene), IIR (butyl rubber), PA (polyamides), NBR (acrylonitrile-butadiene rubber) and PUR (polyester urethane rubber) in fuels and heating oil with admixtures of biogenic substances such as biodiesel and B10 (heating oil with 10 % biodiesel) under purely static conditions. The aim of this study was to evaluate the fluorocarbon rubber performance under compressed conditions. For the investigations, the mass and the compression set of the FKM test specimens were determined before and after exposure for 3, 7, 14, 28, 56 and 90 days in E10 (fuel with 10 % ethanol), E85 (fuel with 85 % ethanol), biodiesel (fatty acid methyl ester, FAME), Super (fuel with max. 5 % ethanol), diesel fuel with max. 5 % biodiesel, pure diesel fuel, Super Plus (fuel without ethanol) and heating oil with 10 % biodiesel (B10) at 40 °C according to ISO 815-1 “Rubber, vulcanized or thermoplastic - determination of compression set – Part 1: At ambient or elevated temperatures”. The compression set test belongs beside the determination of the Shore hardness, the density and the tensile properties to the basic test methods for elastomers. It was measured in regular time intervals up to a re-drying of more than 90 days after relaxation of test specimens. For comparison, FKM test specimens were exposed without fuel under compressed conditions at 40 °C. The highest mass increase of FKM test specimens was measured after 90 days exposure in E10 by 9 %, followed by 8 % in Super fuel, by 4 % in E85 and by 0.6 % in biodiesel. Mass increase and swelling of the test specimens in E10 and Super fuel with max. 5 % ethanol had an influence on the compression set values which were subject to high fluctuations in comparison to the values obtained after exposure to other fuels such as biodiesel, diesel fuel and B10. The results of the present work confirmed the higher swelling of the elastomers such as FKM in E10 obtained under static condition. It can be concluded on the basis of the mass increase and compression set values that FKM is resistant in all fuels under compressed conditions at 40 °C. T2 - EUROCORR 2018 CY - Krakow, Poland DA - 09.09.2018 KW - Sealing materials KW - Compression set KW - Compatibility KW - Fuels KW - Heating oil KW - Biodiesel KW - Bioethanol PY - 2018 AN - OPUS4-45935 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -