TY - CONF A1 - Legall, Herbert A1 - Schwanke, Christoph A1 - Pentzien, Simone A1 - Dittmar, G. A1 - Bonse, Jörn A1 - Krüger, Jörg T1 - X-ray emission as a potential hazard during ultrashort pulse laser material processing N2 - Ultrashort laser pulse micromachining features a high precision. By increasing the repetition rate of the applied laser to several 100 kHz, laser processing becomes quick and cost-effective and make this method attractive for industrial applications. Upon exceeding a critical laser intensity, hard X-ray radiation is generated as a side effect. Even if the emitted X-ray dose per pulse is low, the accumulated X-ray dose becomes significant for high-repetition-rate laser systems so that radiation safety must be considered. The X-ray emission during ultrashort laser processing was investigated for an intensity range up to 2.6*10^14 W/cm2. The investigations were performed with a laser emitting pulses with 925 fs pulse duration, at 1030 nm wavelength and 400 kHz repetition rate. Steel, tungsten, and glass were studied in ambient air. Corresponding X-ray spectra and X-ray dose measurements were presented. Suitable radiation protection strategies were shown. T2 - European Materials Research Society (EMRS) Spring Meeting 2018, Symposium X “Photon-assisted synthesis and processing of materials in nano-microscale” CY - Strasbourg, France DA - 18.06.2018 KW - Laser-induced X-ray emission KW - Ultrashort laser material interaction KW - Femtosecond laser KW - Radiation protection PY - 2018 AN - OPUS4-45382 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schwanke, Christoph A1 - Legall, Herbert A1 - Pentzien, Simone A1 - Dittmar, G. A1 - Bonse, Jörn A1 - Krüger, Jörg T1 - X-ray emission as a potential hazard during ultrashort pulse laser material processing N2 - Ultrashort laser pulse micromachining features a high precision. By increasing the repetition rate of the applied laser to several 100 kHz, laser processing becomes quick and cost-effective and make this method attractive for industrial applications. Upon exceeding a critical laser intensity, hard X-ray radiation is generated as a side effect. Even if the emitted X-ray dose per pulse is low, the accumulated X-ray dose becomes significant for high-repetition-rate laser systems so that radiation safety must be considered. T2 - Informationsveranstaltung der PTB und des BfS zu Fragen der Bauartzulassungen CY - Bundesministerium für Umwelt, Naturschutz und nukleare Sicherheit, Berlin, Germany DA - 20.06.2018 KW - Laser-induced X-ray emission KW - Ultrashort laser material interaction KW - Femtosecond laser KW - Radiation protection PY - 2018 AN - OPUS4-45364 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krüger, Jörg A1 - Legall, Herbert A1 - Schwanke, Christoph A1 - Bonse, Jörn T1 - X-ray emission during ultrashort pulse laser processing N2 - The industrial use of ultrashort laser pulses has made considerable progress in recent years. The reasons for this lie in the availability of high average powers at pulse repetition rates in the several 100 kHz range. The advantages of using ultrashort laser pulses in terms of processing precision can thus be fully exploited. However, high laser intensities on the workpiece can also lead to the generation of unwanted X-rays. Even if the emitted X-ray dose per pulse is low, the accumulated X-ray dose can become significant for high-repetition-rate laser systems so that X-ray exposure safety limits must be considered. The X-ray emission during ultrashort pulse laser processing was investigated for a pulse duration of 925 fs at 1030 nm wavelength and 400 kHz repetition rate. Industrially relevant materials such as steel, aluminum and glass were treated. Tungsten served as reference. X-ray spectra were recorded, and X-ray dose measurements were performed for laser treatment in air. For laser intensities > 2 × 10^13 W/cm2, X-ray doses exceeding the regulatory exposure limits for members of the public were found. Suitable X-ray protection strategies are proposed. T2 - SPIE Photonics West CY - San Francisco, USA DA - 02.02.2019 KW - Laser-induced X-ray emission KW - Ultrashort laser material interaction KW - Radiation protection PY - 2019 AN - OPUS4-47361 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Legall, Herbert A1 - Schwanke, Christoph A1 - Pentzien, Simone A1 - Krüger, Jörg T1 - X-Ray Emission during Laser Processing with Ultrashort Laser Pulses N2 - Ultrashort laser pulse micromachining features a high precision. By increasing the repetition rate of the applied laser to several 100 kHz, laser processing becomes quick and cost-effective and make this method attractive for industrial applications. Upon exceeding a critical laser intensity, hard X-ray radiation is generated as a side effect. Even if the emitted X-ray dose per pulse is low, the accumulated X-ray dose becomes significant for high-repetition-rate laser systems so that radiation safety must be considered. T2 - 5th UKP-Workshop: Ultrafast Laser Technology CY - Aachen, Germany DA - 10.04.2019 KW - Laser-induced X-ray emission KW - Radiation protection KW - Ultrashort laser material interaction PY - 2019 AN - OPUS4-47788 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krüger, Jörg A1 - Kraft, S. A1 - Böttcher, Katrin A1 - Bonse, Jörn A1 - Schille, J. A1 - Löschner, U. T1 - Unwanted X-ray emission in ultrashort pulse laser processing: From metallic to biological materials N2 - Ultrashort laser pulses have become established in many industrial processes. Additionally, they are also an integral part of medical applications especially in ophthalmology and to some extent in dentistry. The availability of highly repetitive powerful laser sources and advanced laser beam control systems have favored these developments. However, the laser processing may be accompanied by the generation of unwanted X-rays. Small doses per laser pulse can accumulate to significant dose levels at high laser pulse repetition rates. Moreover, burst mode processing increases the X-ray dose rates compared to single pulse use and results in X-ray photon energies up to 40 keV for tungsten targets. For laser treatment of human teeth, clearly noticeable X-ray skin dose rates can be found. The paper summarizes the current state of the art in the field of undesired generation of X-ray radiation during ultrashort pulse laser processing in air. T2 - Lasers in Manufacturing 2023 (LiM 2023) CY - Munich, Germany DA - 26.06.2023 KW - Ultrashort laser pulses KW - Laser-induced X-ray emission KW - Secondary hazard PY - 2023 AN - OPUS4-57816 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -