TY - JOUR A1 - Pohl, P. A1 - Kümmel, F. A1 - Schunk, C. A1 - Serrano Munoz, Itziar A1 - Markötter, Henning A1 - Göken, M. A1 - Höppel, H. W. T1 - About the Role of Interfaces on the Fatigue Crack Propagation in Laminated Metallic Composites JF - Materials N2 - The influence of gradients in hardness and elastic properties at interfaces of dissimilar materials in laminated metallic composites (LMCs) on fatigue crack propagation is investigated experimentally for three different LMC systems: Al/Al-LMCs with dissimilar yield stress and Al/Steel-LMCs as well as Al/Ti/Steel-LMCs with dissimilar yield stress and Young’s modulus, respectively. The damage tolerant fatigue behavior in Al/Al-LMCs with an alternating layer structure is enhanced significantly compared to constituent monolithic materials. The prevalent toughening mechanisms at the interfaces are identified by microscopical methods and synchrotron X-ray computed tomography. For the soft/hard transition, crack deflection mechanisms at the vicinity of the interface are observed, whereas crack bifurcation mechanisms can be seen for the hard/soft transition. The crack propagation in Al/Steel-LMCs was studied conducting in-situ scanning electron microscope (SEM) experiments in the respective low cycle fatigue (LCF) and high cycle fatigue (HCF) regimes of the laminate. The enhanced resistance against crack propagation in the LCF regime is attributed to the prevalent stress redistribution, crack deflection, and crack bridging mechanisms. The fatigue properties of different Al/Ti/Steel-LMC systems show the potential of LMCs in terms of an appropriate selection of constituents in combination with an optimized architecture. The results are also discussed under the aspect of tailored lightweight applications subjected to cyclic loading. KW - Laminated metallic composites KW - Toughening mechanisms KW - Interfaces KW - Fatigue crack propagation KW - Fatigue crack growth PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-526531 DO - https://doi.org/10.3390/ma14102564 VL - 14 IS - 10 SP - 2564 PB - MDPI AN - OPUS4-52653 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sonego, M. A1 - Madia, Mauro A1 - Eder, M. A1 - Fleck, C. A1 - Pessan, L. A. T1 - Microstructural features influencing the mechanical performance of the Brazil nut (Bertholletia excelsa) mesocarp JF - Journal of the Mechanical Behavior of Biomedical Materials N2 - Brazil nut (Bertholletia excelsa) fruits are capable of resisting high mechanical forces when released from trees as tall as 50 m, as well as during animal dispersal by sharp-teethed rodents. Thick mesocarp plays a crucial part in seed protection. We investigated the role of microstructure and how sclereids, fibers, and voids affect nutshell performance using compression, tensile and fracture toughness tests. Fractured specimens were analyzed through scanning electron microscopy (SEM) and microtomography (microCT). Mesocarp showed high deformability (strain at max. stress of ~30%) under compression loading, a critical tensile strength of ~24.9 MPa, a Weibull modulus of ~3, and an elastic modulus of ~2 GPa in the tensile test. The fracture toughness, estimated through the work of fracture of SENB tests, reached ~2 kJ/m2. The thick and strong walls of mesocarp cells, with a weaker boundary between them (compound middle lamella), promote a tortuous intercellular crack path. Several toughening mechanisms, such as crack deflection, breaking of fiber bundles, fiber pullout and bridging as well as crack branching, occur depending on how fiber bundles and voids are oriented. KW - Toughening mechanisms KW - Brazil nut Mesocarp KW - Microstructure KW - Mechanical properties PY - 2021 DO - https://doi.org/10.1016/j.jmbbm.2020.104306 VL - 116 SP - 104306 PB - Elsevier Ltd. AN - OPUS4-52081 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -