TY - JOUR A1 - Martin, S. A1 - Walnsch, A. A1 - Nolze, Gert A1 - Leineweber, A. A1 - Léaux, F. A1 - Scheuerlein, C. T1 - The crystal structure of (Nb0.75Cu0.25)Sn-2 in the Cu-Nb-Sn system N2 - During the processing of superconducting Nb3Sn wire, several intermediate intermetallic phases including a previously encountered Cu-Nb-Sn phase show up. The yet unknown crystal structure of this phase is now identified by a combination of different experimental techniques and database search to be of the hexagonal NiMg2 type with a proposed composition of about (Nb0.75Cu0.25)Sn2. The structure determination started from an evaluation of the lattice parameters from EBSD Kikuchi patterns from quenched material suggesting hexagonal or orthorhombic symmetry. A database search then led to the hexagonal NiMg2 type structure, the presence of which was confirmed by a Rietveld analysis on the basis of high energy synchrotron X-ray powder diffraction data. Assuming a partial substitution of Nb in orthorhombic NbSn2 by Cu, the change of the valence electron concentration provokes a structural transformation from the CuMg2 type for NbSn2 to the NiMg2 type for (Nb0.75Cu0.25)Sn2. In the previous literature the (Nb0.75Cu0.25)Sn2 phase described here has occasionally been referred to as Nausite. KW - Electron backscatter diffraction KW - X-ray diffraction KW - Intermetallic compound KW - Structure solution KW - Superconductor PY - 2017 DO - https://doi.org/10.1016/j.intermet.2016.09.008 SN - 0966-9795 SN - 1879-0216 VL - 80 SP - 16 EP - 21 PB - Elsevier Ltd. AN - OPUS4-37874 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ferreira, Daniela R. A1 - Portet, Anaïs A1 - Alves, Paula C. A1 - Rijo, Patrícia A1 - Gomes, Clara S. B. A1 - Duarte, M. Teresa A1 - Halasz, Ivan A1 - Colacino, Evelina A1 - Emmerling, Franziska A1 - André, Vânia T1 - Modulating the crystalline forms of silver–sulfadiazine complexes by mechanochemistry N2 - Mechanochemical synthesis of pharmaceutical compounds has gained significant attention due to its potential to overcome traditional synthetic challenges while offering the possibility of improving the physicochemical properties of drugs. This study delves into the mechanochemical synthesis of silver sulfadiazine (AgSD) coordination compounds, obtained under different mechanochemical stress and processing conditions. The aim of this work was to investigate the influence of mechanochemical conditions on the selectivity in the preparation of AgSD coordination compounds. Through a series of experiments, we demonstrate the successful synthesis of two different AgSD coordination networks, using high-energy ball milling. By strategically manipulating the starting materials and milling parameters — including milling time, milling frequency, type of mechanical stress (as determined by different milling devices), and the presence of co-milling agents — we were able to control the product outcome. As a result, we achieved two different forms of silver-sulfadiazine metal frameworks, one of which was not previously disclosed. The crystal structure of the new form, obtained from high resolution PXRD synchrotron data, was compared with the previously known structure of a silver sulfadiazine compound. The in-depth antimicrobial activity systematic study of these AgSD forms on the generic systems showed increased antibacterial activity when compared to sulfadiazine. This research sheds light on the mechanochemical synthesis of silver sulfadiazine complexes. The obtained knowledge may guide the development of novel synthetic strategies for other drug molecules, leading to improved drug performance, stability, and therapeutic outcomes. KW - Mechanochemistry KW - Structure solution PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-646099 DO - https://doi.org/10.1039/d5ce00572h SN - 1466-8033 SP - 1 EP - 12 PB - Royal Society of Chemistry (RSC) AN - OPUS4-64609 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -