TY - THES A1 - Koch, Bernd T1 - Zum Ermüdungsverhalten der metastabilen ß-Titanlegierung Ti-6,8Mo-4,5Fe-1,5Al (Timetal LCB): mechanische und mikrostrukturelle Untersuchungen N2 - Bedingt durch die allgegenwärtige Notwendigkeit der Einsparung fossiler Brennstoffe steigt auch in der Kraftfahrzeugindustrie der Druck zur verstärkten Anwendung von intelligentem Leichtbau. Um dafür die bisher vornehmlich in der Luftfahrtindustrie eingesetzten, hochfesten β-Titanlegierungen für kostensensiblere Bereiche attraktiver zu machen, wurde die metastabile Legierung Ti-6,8Mo-4,5Fe-1,5Al (Handelsname: Timetal LCB) entwickelt. Ihr Einsatzschwerpunkt sind Strukturbauteile im Fahrwerksbereich von Kraftfahrzeugen. Die vorliegende Arbeit beschäftigt sich mit mechanischen Eigenschaften von Timetal LCB und sucht Hinweise für deren mikrostrukturelle Ursachen. Zu diesem Zweck wurden Proben aus für die Herstellung von Kraftfahrzeug-Fahrwerksfedern bestimmtem Draht dieses Materials entnommen und uniaxialen Zug- und Ermüdungsversuchen unterzogen. Dabei wurden sowohl Proben im Lieferzustand (gerollt im α+β-Gebiet und lösungsgeglüht) als auch im endwärmebehandelten Zustand (wie vor, plus 4 Stunden Laborwärmebehandlung bei 540°C) untersucht. Das mechanische Versuchsprogramm umfasste Zugversuche, uniaxiale Ermüdungsversuche im Zugschwellbereich (R = 0,1) in Spannungskontrolle und, erstmalig für dieses Material, gesamtdehnungsgeregelte uniaxiale Ermüdungsversuche, ebenfalls mit R = 0,1. Dabei wurden Versuche in Laboratmosphäre sowohl bei Raumtemperatur als auch unter 200°C bis zum Bruch durchgeführt und die erhaltenen Versuchsdaten ausgewertet. Zur Begutachtung der mikrostrukturellen Vorgänge wurden neben den üblichen licht- und rasterelektronenmikroskopischen Verfahren in größerem Umfang TEM-Untersuchungen unternommen. Die Auswertung der Zugversuchsdaten ergab ein nahezu ideal-plastisches Verhalten sowohl des lösungsgeglühten als auch des endwärmebehandelten Zustands. Bei 200°C Temperatur zeigte der endwärmebehandelte Zustand ein leichtes Verfestigungsverhalten bei reduzierter Steifigkeit und Zugfestigkeit. Die spannungsgeregelten Ermüdungsversuche ergaben leichtes zyklisches Entfestigungsverhalten ohne Sättigung und ausgeprägtes zyklisches Kriechen der endwärmebehandelten Proben bei Raumtemperatur. Versuche in Gesamtdehnungskontrolle hingegen zeigten nach kurzer Verfestigung Sättigung und konstantes Verhalten über die Rest-Versuchsdauer sowohl bei Raumtemperatur als auch bei 200°C bis hin zu Gesamt-Oberdehnungen von 2,5%, erst darüber zeigte sich kontinuierliche Entfestigung. Auffälligkeiten zeigten sich bei den Proben im Lieferzustand bei Raumtemperatur in Gesamtdehnungsregelung, wo das Verhalten der Spannungsantwort wie auch das Bruchverhalten für Versuche mit Gesamt-Oberdehnung von 3...4% stark von den übrigen Zuständen abwich. Als Ursache hierfür wird verformungsinduzierte α- Phasenausscheidung in Nanostruktur vorgeschlagen. Alle dehnungsgeregelten Versuche unterlagen ausgeprägter zyklischer Relaxation. Mit Hilfe der TEM wurden lamellare Substrukturen innerhalb der β-Phase des lösungsgeglühten Lieferzustands beobachtet. Ermüdungsbelastung führt zu weiterer Segmentierung dieser Lamellenstruktur. Im wärmebehandelten Zustand trägt die α-Phase den größten Teil der Verformung, erkennbar an ausgeprägten α-Subkornstrukturen in den ermüdeten Zuständen. Es wurden Hinweise auf Subkornrotation gefunden. Der Einfluss der Temperatur von 200°C bei der Versuchsführung ist mikrostrukturell minimal. N2 - Due to the common necessity of saving fossile combustibles, pressure rises for the automotive industry to employ lightweight constructions. To encourage the usage of high-strength β-titanium alloys, which have been predominantly used in the aerospace industry up to now, the metastable alloy Ti-6.8Mo-4.5Fe-1.5Al (brand name: Timetal LCB) has been developed for more cost sensitive branches. Its targeted main areas of application are structural parts in automobile suspensions. The present work deals with the mechanical behaviour of Timetal LCB and looks out for hints on its microstructural reasons. To accomplish this goal, specimens were taken out of LCB wire made for automotive suspension spring manufacturing. Uniaxial tensile and fatigue tests were carried out. Two different heat treatments were investigated, an asdelivered state (hot rolled in (α+β)-regime and solution treated) as well as an additionally aged state (likewise, plus 4h laboratory heat treatment at 540°C). Mechanical test Programme comprised tensile tests, uniaxial fatigue tests in tensile swelling mode (R = 0.1) and force control and, for the first time regarding this material, uniaxial fatigue tests in total strain control with R = 0.1. Tests were made in laboratory atmosphere at room temperature and at 200°C constant temperature until specimen fracture occurred. Mechanical test data was recorded and evaluated. To analyse microstructural developments, extensive TEM investigations were done additionally to usual light- and scanning electron microscopy. The evaluation of tensile test data showed near perfect ideal-plastic behaviour of the asdelivered as well as the aged material state. At 200°C, aged material showed slight strengthening behaviour combined with reduced overall strength and stiffness. Fatigue tests in force control resulted in mild cyclic softening behaviour without saturation and markedly appearing cyclic creep of aged specimens at room temperature. Total strain controlled fatigue tests, however, showed short cyclic strengthening followed by constant force Response at room temperature as well as 200°C up to 2.5% total strain. Above this value, cyclic softening occurred. Tests with as-delivered specimens at 3% and 4% total strain had a distinctive force response differing from all other total strain controlled tests; the same statement applies for their fracture behaviour. A deformation induced precipitation of nanostructure α-Phase is assumed to be responsible for these findings. All tests in total strain control were subject to pronounced cyclic relaxation. By TEM investigations lamellar substructures were found inside β-phase areas of the asdelivered states. Fatigue loading led to additional segmentation of these substructures. In aged state, α-phase carries the major part of deformation work, noticeable by distinct α- substructures in fatigued specimen states. Hints were found for rotation of generated subgrains. Influence of 200°C test temperature on microstructural developments was found to be minimal. T3 - BAM Dissertationsreihe - 28 KW - Beta-Titan KW - TEM KW - Ermüdung KW - Dehnungskontrolliert KW - LCB PY - 2007 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-1300 SN - 978-3-9811655-7-9 SN - 1613-4249 VL - 28 SP - 1 EP - 138 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-130 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Skrotzki, Birgit T1 - Radii of S-phase Al2CuMg in Al-alloy EN AW 2618A after different aging times at 190°C N2 - The dataset contains data from quantitative microstructural analysis of transmission electron microscopy (TEM) studies of the S-phase (Al2CuMg) radii in Al-alloy EN AW 2618A. The investigated material and the applied methods were described in detail in two publications. KW - Aluminium alloy KW - EN AW 2618A a KW - S-phase KW - Al2CuMg KW - Aging KW - Creep KW - Radii distribution KW - TEM PY - 2022 UR - https://doi.org/10.5281/zenodo.6659461 UR - https://doi.org/10.5281/zenodo.7625259 DO - https://doi.org/10.5281/zenodo.6659460 PB - Zenodo CY - Geneva AN - OPUS4-55067 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni A1 - Serrano Munoz, Itziar A1 - Fernandez, R. A1 - Gonzalez-Doncel, G. A1 - Garces, G. T1 - A paradigm shift in the description of creep in metals can only occur through multi-scale imaging N2 - The description of creep in metals has reached a high level of complexity; fine details are revealed by all sorts of characterization techniques and different theoretical models. However, to date virtually no fully microstructure-driven quantitative description of the phenomenon is available. This has brought to interesting inconsistencies; the classic description of (secondary) creep rests on the so-called power law, which however: a- has a pre-factor spanning over 10 orders of magnitude; b- has different reported exponents for the same material; c- has no explanation for the values of such exponents. Recently, a novel description (the so-called Solid State Transformation Creep (SSTC) Model) has been proposed to tackle the problem under a different light. The model has two remarkable features: 1- it describes creep as the accumulation of elementary strains due to dislocation motion; 2- it predicates that creep is proceeding by the evolution of a fractal arrangement of dislocations. Such description, however, needs a great deal of corroborating evidence, and indeed, is still incomplete. To date, we have been able to observe and somehow quantify the fractal arrangement of microstructures through Transmission Electron Microscopy (TEM), observe the accumulation of dislocations at grain boundaries by EBSD-KAM (Electron Back-Scattered Diffraction-Kernel Angular Misorientation) analysis, quantify the kinetic character (solid state transformation) of experimental creep curves, and estimate the sub-grain size of the fractal microstructure through X-ray refraction techniques. All pieces of the mosaic seem to yield a consistent picture: we seem being on the right path to reconstruct the whole elephant by probing single parts of it. What is still missing is the bond between the various scales of investigation. T2 - Korrelative Materialcharakterisierung 2022 CY - Dresden, Germany DA - 13.10.2022 KW - X-ray refraction KW - EBSD KW - Alloys KW - TEM KW - SEM PY - 2022 AN - OPUS4-56163 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Quantitative Microstructural Analysis - VAMAS TWA 37 & Liaison with ISO/TC 202 Microbeam Analysis N2 - The progress in activities on Microbeam Analysis under VAMAS/TWA 37 is reviewed. Particularly the liaison with the new projects within the ISO technical committee TC 202 is presented and discussed with respect to the possibility of identifying and launching related VAMAS projects. The recently started project FIB sample processing for TEM is highlighted. Need of more promotion for the engagement of more participants from industry and academia at national, European and international level is highlighted. Also, the competition with the other technical working areas (on 'nano' or materials-related) is critically discussed. Further, a short overview of the VAMAS areas of activities is given where Germany is involved. Planed regional VAMAS Workshops in Germany in 2023 are announced. T2 - Versailles Project on Advanced Materials and Standards (VAMAS) 47th Steering Committee Meeting CY - Torino, Italy DA - 18.10.2022 KW - VAMAS KW - Microbeam analysis KW - FIB KW - TEM KW - Sample preparation KW - EBSD PY - 2022 UR - https://amdgroup.inrim.it/events/vamas-sc-meeting-47 AN - OPUS4-56146 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Hodoroaba, Vasile-Dan A1 - Fontanges, R. A1 - Delvallée, A. A1 - Deumer, J. A1 - Salzmann, C. A1 - Crouzier, L. A1 - Gollwitzer, C. A1 - Klein, T. A1 - Koops, R. A1 - Sebaihi, N. A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob A1 - Artous, S. A1 - Taché, O. A1 - Feltin, N. T1 - Report on full algorithm sequences for nanoparticle detection and size measurement as developed on both a physical basis and by machine learning T2 - Community EMPIR Project 17NRM04 nPSize (Improved traceability chain of nanoparticle size measurements) N2 - he main objective of the nPSize project is to improve the measurement capabilities for nanoparticle size based on both measurement methods traceable to SI units and new reference materials. Two basic approaches have been used in order to develop measurement procedures resulting in traceable results of the nanoparticle size distribution: physical modelling for the methods used in the project (TSEM, SEM, AFM and SAXS) and machine learning. Physical modelling: In this part, the physical models associated with different shape measurements for the techniques TSEM, SEM, AFM and SAXS have been collected and further developed with the aim to simulate the resulting signal as measured by the individual methods. Uncertainties and traceability associated with each model were investigated and evaluated. In the following, the progress on these physical models is reported for each individual method. Machine Learning modelling: The aim of this part is to use machine learning to enable automatic measurement of nanoparticle shape from expert a-priori information only. No physical model will be used as a-priori information in this task. The accuracy and traceability of the size results obtained by each technique will be analyzed and compared with the physical modelling. A machine learning database will then be used to create automatic detection algorithms. KW - Nanoparticles KW - Particle size distribution KW - SEM KW - TSEM KW - TEM KW - SAXS KW - AFM PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546531 DO - https://doi.org/10.5281/zenodo.5807864 SP - 1 EP - 20 PB - Zenodo CY - Geneva AN - OPUS4-54653 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epishin, A. I. A1 - Petrushin, N. V. A1 - Link, T. A1 - Nolze, Gert A1 - Loshchinin, Yu. V. A1 - Gerstein, G. T1 - Thermal stability of the structure of a heat-resistant cobalt alloy hardened with intermetallic γ'-phase precipitates JF - Russian Metallurgy N2 - The thermal stability of the microstructure of a heat-resistant cobalt alloy, which consists of a γ solid solution strengthened with γ'-phase precipitates, has been studied. The temperature behavior of the dissolution of the hardening γ' phase and the kinetics of its coarsening at 700 and 800°C have been determined. It is found that, during prolonged annealing at 800°C, the γ' → β phase transformation occurs. KW - Superalloy KW - Microstructure KW - Hardening KW - Electron backscatter diffraction KW - TEM PY - 2016 DO - https://doi.org/10.1134/S0036029516040078 SN - 0036-0295 VL - 2016 IS - 4 SP - 286 EP - 291 PB - Pleiades Publishing AN - OPUS4-37768 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bettge, Dirk A1 - Österle, Werner T1 - “Cube slip” in near-[111] oriented specimens of a single-crystal nickel-base superalloy JF - Scripta Materialia N2 - In the past few years, it has been discussed with increasing frequency, whether cube slip does occur in gamma' hardened nickel-base superalloys. Occurrence of cube slip has consequences for the modeling of orientation dependence of the CRSS. Until now, there are only few experimental investigations. In principle, cube slip should be possible in primitive cubic lattices (e.g. L12 ordered gamma' phase) but not in face centered cubic ones (e.g. Ni solid solution). The most favourable specimen orientations are near [111], where the Schmid factors for this type of glide exceed those for octahedral systems. There are two basic methods to detect cube slip: macroscopic slip trace analysis and Transmission electron microscopy (TEM) investigation of the dislocation structure. Few observations of cube slip by macroscopic slip traces are reported in the literature. But it is still uncertain under which test conditions cube slip occurs and what the dislocation mechanisms are. Cube slip was observed during tensile or compression tests of several first generation superalloys, but it seems not to occur during shear creep deformation (e.g. CMSX-4 at 980°C), and it is also lacking under conventional tensile or compression loading, if the gmma' particles are small. No observations were ever reported of dislocations gliding on {001} planes in matrix channels. KW - Cube slip KW - Nickel-base superalloy KW - Dislocations KW - TEM PY - 1999 DO - https://doi.org/10.1016/S1359-6462(98)00446-1 SN - 1359-6462 VL - 40 IS - 4 SP - 389 EP - 395 PB - Elsevier AN - OPUS4-38220 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Bettge, Dirk T1 - Mikrostrukturelle Untersuchungen zum Verformungs- und Bruchverhalten der Nickelbasislegierungen SC16 und IN738LC N2 - Ziele dieser Arbeit waren die vergleichende Beschreibung des Verformungs- und Bruchverhaltens der polykristallinen Legierung IN738LC und von [001]-nah orientierten SC16-Einkristallen über einen großen Temperaturbereich sowie die Herstellung von Zusammenhängen zwischen Versetzungs- und Bruchmechanismen. Besonderes Augenmerk galt dem Tieftemperaturbereich bis 450 °C, dabei insbesondere der Stapelfehlerbildung in der Gamma'-Phase, dem Fließspannungsminimum im Zugversuch und der zusätzlichen zyklischen Verfestigung in diesem Temperaturbereich. Spezifische Unterschiede zwischen beiden Werkstoffen sollten herausgearbeitet werden. Dazu wurden hauptsächlich mikroskopische Methoden, insbesondere die Transmissions-Elektronenmikroskopie eingesetzt. Die Ausgangsgefüge wurden untersucht. Beide Werkstoffe hatten die übliche Standardwärmebehandlung erfahren und wiesen daher eine bimodale gamma'-Verteilung auf. An SC16 wurden Auslagerungsversuche bei 950 °C vorgenommen und die Veränderung der gamma'-Morphologie beschrieben. Die Temperaturabhängigkeiten der Verformungsmechanismen von SC16 und IN738LC sind vergleichbar mit den in der Literatur bezüglich einkristalliner Superlegierungen mit höheren gamma'-Volumenanteilen beschriebenen. Beginnend bei Raumtemperatur treten mit steigender Temperatur folgende Mechanismen auf: Tieftemperatur-(LT-)Stapelfehler, Antiphasengrenzen-gekoppelte Versetzungspaare, Hochtemperatur-(HT-)Stapelfehler und Orowan-Ringe um die gaama'-Teilchen. Das Fließspannungsminimum des IN738LC bei 450 °C kann einem Wechsel im Verformungsmechanismus zugeordnet werden. Die Mechanismenwechsel finden bei SC16 bei höheren Temperaturen statt als bei IN738LC. Von Raumtemperatur bis 750 °C wird bei IN738LC im LCF-Bereich bei out-of-phase-Versuchen eine zusätzliche zyklische Verfestigung beobachtet, die ihr Maximum bei 450 °C hat. Bei dieser Temperatur wird die plastische Verformung durch a/2<110>-Versetzungspaare erzeugt, die die gaama'-Phase parallel zu {111} schneiden. Während der out-of-phase-Versuche werden zusätzliche Gleitsysteme auf verschiedenen {111}-Ebenen aktiviert, was zu einer erhöhten Dichte von unbeweglichen Versetzungen führt. Bei höheren Temperaturen können Versetzungen gaama'-Teilchen und andere Hindernisse durch Quergleiten und Klettern umgehen. Beim SC16 lassen sich LT- (bis 750 °C) und HT-Bruchverhalten (ab 750 °C) klar unterscheiden. Ersteres zeigt sich in großflächigem Abscheren und Bruchinitiierung an der Probenoberfläche. Der HT-Bruch wird an Poren im Innern initiiert und führt zu einem "Teller-Tasse"-Bruch mit einer ringförmigen Scherlippe im äußeren Bereich. Beim IN738LC hingegen treten die beim SC16 gefundenen Elemente in den Bruchflächen nur in untergeordneter Weise hervor. Der Rissverlauf ist fast immer interdendritisch und nur zum Teil transkristallin. Primärkarbide werden im LT-Bereich gespalten, im HT-Bereich abgelöst. Minima der Temperaturabhängigkeit der Bruchdehnung des IN738LC gehen jeweils mit lokalisierter Gleitung in einzelnen Gleitbändern einher. Immer wenn bei einer bestimmten Temperatur ein neuer Verformungsmechanismus einzusetzen beginnt, werden inhomogene Gleitverteilungen beobachtet, die zu einer geringen Verformbarkeit führen. KW - Nickelbasis KW - Versetzung KW - TEM PY - 1997 SN - 3-89574-242-2 SP - 1 EP - 142 PB - Verlag Dr. Köster CY - Berlin AN - OPUS4-38194 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Schulz, Wencke T1 - Abscheidung und Charakterisierung von Sol-Gel-Aluminiumoxidschichten auf kommerziellen Kraftwerksstählen zum Schutz gegen Korrosion bei Oxyfuel-Verbrennung N2 - The objective of the present work was the investigation and demonstration of the potential of sol-gel alumina layers as corrosion protection of commercial power plant steels under oxyfuel conditions. The starting points of this work were modified Yoldas-sols which were developed in the BAM-department 5.6. These sols were suitable for the spin-coating method only. The application of coatings on tubes by spin-coating is impossible. Therefore, the chemical composition of the modified Yoldas-sol had to be adapted to the dip- and spray-coating techniques. Exclusively the sol with the composition s-0.52-6-1.5 with a nitrate/aluminium ratio of 0.52; a solid content of 6 wt.% and a PVP (binder) content of 1.5 wt.% could fulfill the necessary criteria: long-term stability; formation of a dense, crack-free and well adhered layer on polished metal surfaces; as well as high protective abilities against corrosion in H2O-CO2-O2-SO2. The commercial power plant steel X20CrMoV12-1 (X20) and the steel X12Cr13 were successfully coated with the sol s-0.52-6-1.5 by means of the dip-coating method. An at least 400 nm thick alumina layer (δ-Al2O3) is necessary to ensure the corrosion protection of these steels. The corrosion of the coated samples compared to that of the uncoated ones was significantly reduced, even after 1000 h of exposure in a H2O-CO2-O2-SO2 atmosphere at 600°C. Sulfur and carbon were not detected at the substrate surface or beneath the coating. Hence the transport of the flue gas components SO2 and CO2 into as well as through the alumina layer could be hindered. The diffusion of the alloying elements (Cr, Mn, Si) into the alumina layer resulted in the formation of mixed oxides like δ-(Al,Cr)2O3. Formation of such phases considerably contributed to the corrosion protection. The long-term stability of the sol s-0.52-6-1.5 and the high protective abilities of the alumina layer on commercial power plant steels provide a good basis for an industrial application. KW - TEM KW - Alumina KW - Coating KW - Oxyfuel KW - Steel KW - High-Temperature Corrosion PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:188-fudissthesis000000102280-0 DO - https://doi.org/10.17169/refubium-6842 SP - 0 EP - 179 PB - Freie Universität CY - Berlin AN - OPUS4-50310 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dörfel, Ilona A1 - Nofz, Marianne A1 - Sojref, Regine A1 - Schulz, Wencke A1 - Saliwan Neumann, Romeo A1 - Hesse, Rene A1 - Meyer, Christian A1 - Kranzmann, Axel T1 - Microstructure of alumina coating on steel P92 after thermal cycling N2 - 1. Introduction Alumina coatings are one possibility to increase the corrosion resistance, lifetime and application range of thermally loaded steel components, e.g. in modern power plants where the use of the Oxy-fuel technology corrosive fuel gas (H2O-CO2-O2-SO2 at 650 °C) affects the steel parts. In previous investigations the efficacy of protective alumina coatings on steel P 92 under those conditions was demonstrated. A shutdown and re-start of power plants or parts of them causes thermal stresses of the components which can cause detrimental effects like microstructural changes in the steel itself, changes in its oxidation behavior, delamination or microstructural changes in the coating. All those effects can lead to failure of the components, resulting in lifetime reduction. 2. Objectives As a first step, we concentrate on the influence of thermal cycling tests and observe the impact on the microstructure of the coating and the interface in laboratory air. These investigations will help understanding the processes which occur, show directions of potentially necessary changes of the coating due to improved thermal stress behaviour. 3. Materials & methods P 92 is a ferritic-martensitic steel, containing 9% Cr which forms protective Cr-oxide-rich scales in dry environments and non-protective ones in water-containing environments. Coupons of P 92, having ground surfaces, were dip-coated via a sol-gel process and subjected to thermal cycling for 500 h (1000 cycles) in laboratory air in a temperature range between room temperature and 660° C. The resulting mass loss was determined by weighing. Samples for TEM investigations were produced as cross sections normal to the sample surface by FIB preparation (Quanta 3D, (FEI)). The TEM/STEM investigations were performed using a JEM2200FS (JEOL) operated at 200 kV. The microstructure of the coating and the interface after cycling tests was characterized via TEM, HREM, and STEM images, electron diffraction as well as EDX and EFTEM methods. 4. Results At steep edges in the surface profile the coating was imperfect and cracks have formed during the thermal cycling. Flat surface regions are well-covered. The whole interface region between the steel and the coating shows a dense Cr-oxide-rich zone, which can form protective regions in case of local failure. The Cr-oxide zone is followed by a region of mixed oxides, containing Cr, Mn, Fe, and Al in variable composition, to which a porous δ-Al2O3 zone is joined. 5. Conclusions • Alumina coatings promote the formation of dense, Cr-rich zones at the interface, which makes the system self-healing. • These zones are stable during thermal stresses, even in regions with cracked coatings. • They cause reduction of outward diffusion and mass loss during thermal cycling. T2 - MC2017 CY - Lausanne, Switzerland DA - 21.08.2017 KW - Coating KW - Thermal cycling KW - TEM PY - 2017 UR - https://www.mc2017.ch/general-information/downloads/ AN - OPUS4-41724 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -