TY - CONF A1 - Rautenberg, Max T1 - Ca-MOFs with varying fluorination degree N2 - In current Li-ion batteries electrode materials consist typically of inorganic materials, such as LiCoO2, LiNixCoyMn1-zO2, LiFePO4, Li4Ti5O12. These materials struggle with toxicity or limited mineral resources, making them expensive. Therefore, eco-friendly, sustainable, and low-cost alternatives are researched for in recent years. A series of organic compounds were investigated as electrode materials for alkali-ion batteries. Among them organic carbonyl-based materials show reversible storage of lithium- or sodium-ions. Metal terephthalates stand out with their easy synthesis, moderate operational voltage and enhanced dissolution stability compared to other organic compounds. One degradation pathway consists of the dissolution of the electrode material by HF, formed in a side reaction by water and the fluorous electrolyte. Fluorinated metal terephthalates could offer higher dissolution stability against HF and less contamination by water due to their increased hydrophobicity. The goal of this project is the synthesis and the investigation of the formation mechanism of a series of calcium-based MOFs with increasing fluorine content. For this purpose, we aimed for the construction of calcium-based MOFs with terephthalic acid (H2-pBDC), 2-fluoro-terephthalic acid (H2-2F-pBDC), 2,3,4,5-tetrafluoroterephthalic acid (H2-pBDC-F4), isophthalic acid (H2-mBDC) and 5-fluoro-isophthalic acid (H2-5F-mBDC). T2 - SFB 1349 Wintersymposium 2022 CY - Berlin, Germany DA - 15.03.2022 KW - Mechanochemistry KW - Electrode materials KW - Fluorinated MOFs KW - In situ PXRD PY - 2022 AN - OPUS4-54478 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -