TY - JOUR A1 - Pellegrino, Francesco A1 - Ortel, Erik A1 - Mielke, Johannes A1 - Schmidt, R. A1 - Maurino, V. A1 - Hodoroaba, Vasile-Dan T1 - Customizing New Titanium Dioxide Nanoparticles with Controlled Particle Size and Shape Distribution: A Feasibility Study Toward Reference Materials for Quality Assurance of Nonspherical Nanoparticle Characterization JF - Advanced Engineering Materials N2 - An overview is given on the synthesis of TiO2 nanoparticles with well-defined nonspherical shapes (platelet like, bipyramidal, and elongated), with the focus on controlled, reproducible synthesis, as a key requirement for the production of reference materials with homogeneous and stable properties. Particularly with regard to the nanoparticle shapes, there is a high need of certified materials, solely one material of this type being commercially available since a few months (elongated TiO2). Further, measurement approaches with electron microscopy as the golden method to tackle the nanoparticle shape are developed to determine accurately the size and shape distribution for such nonspherical particles. A prerequisite for accurate and easy (i.e., automated) image analysis is the sample preparation, which ideally must ensure a deposition of the nanoparticles from liquid suspension onto a substrate such that the particles do not overlap, are solvent-free, and have a high deposition density. Challenges in the Synthesis of perfectly monodispersed and solvent-free TiO2 nanoparticles of platelet and acicular shapes are highlighted as well as successful measurement approaches on how to extract from 2D projection electron micrographs the most accurate spatial information, that is, true 3D size, for example, of the bipyramidal nanoparticles with different geometrical orientations on a substrate. KW - Nanoparticles KW - Titanium dioxide KW - Reference materials KW - Standardisation KW - Particle size and shape distribution PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-538849 DO - https://doi.org/10.1002/adem.202101347 VL - 24 IS - 6 SP - 1 EP - 10 PB - Wiley-VCH AN - OPUS4-53884 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Hodoroaba, Vasile-Dan A1 - Fontanges, Richard T1 - A new deep-learning AI tool for analysing images of complex nanoparticles N2 - A thousand times thinner than a human hair, nanoparticles (NPs) are finding applications in a range of modern products. However, as some can affect human health or the environment, knowing the types present is essential. Electron microscopy is the ‘gold standard’ for NP analysis, allowing identification based on manual size analysis, but a new method was required to analyse these particles quickly, accurately and in a consistent way. KW - Nanoparticles KW - Imaging KW - AI tool KW - Particle size and shape distribution PY - 2024 UR - https://www.euramet.org/casestudies/casestudiesdetails/news/a-new-deep-learning-ai-tool-for-analysing-images-of-complex-nanoparticles SP - 1 EP - 2 PB - EURAMET CY - Braunschweig AN - OPUS4-60095 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -