TY - CONF A1 - Paul, Astrid A1 - Fontana, Patrick A1 - Ziegert, Christof ED - Priebe, Nsesheye Susan ED - Schmidt, Wolfram T1 - Earthen panels - Quality control for an industrially prefabricated building component made of natural raw materials N2 - In the past few years, the share of earthen building materials used in constructions in Central Europe has increased. That is due to growing acknowledgement of its qualities regarding balancing of humidity, absorption of odours and acoustical insulation. To regulate these (mostly indoor) uses, the German Institute for Standardization (DIN) has published norms for adobe, earth mortar for masonry and earth plaster. In addition to these traditional building materials, earthen panels have been developed. As an ecological alternative to gypsum plaster boards, they combine climatic advantages of traditional materials with economic advantages of industrial processing, i.e. prefabrication and drywall techniques. Earthen panels are a composite layered material, comparable to Textile Reinforced Concrete (TRC). Most products contain an inner layer of reed tubes which improve the tensile strength and reduce the weight. Often, one or both surfaces are reinforced with a fibrous net to prevent cracks in the plastering that is usually applied on top. Additives range from straw to expanded clay. Special panels contain waxes that improve their heat storage capacity or water pipes to allow the usage as flat heating and cooling systems. T2 - 1st Symposium on Knowledge Exchange for Young Scientists (KEYS) CY - Dar es Salaam, Tanzania DA - 09.06.2015 KW - Earthen panel KW - Quality control KW - Industrial prefabrication KW - Building component KW - Natural raw material PY - 2015 SN - 978-3-9817149-3-7 N1 - Geburtsname von Priebe, Nsesheye Susan: Msinjili, N. S. - Birth name of Priebe, Nsesheye Susan: Msinjili, N. S. SP - 189 EP - 192 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-36857 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hertwig, Andreas A1 - Ermilova, Elena T1 - Ellipsometry as a production measurement tool N2 - Spectroscopic Ellipsometry is an enormously versatile measurement tool for surfaces and thin layers. We discuss the use of ellipsometry in the context of quality control in production processes of eletrconic devices. T2 - Photonics Days Berlin Brandenburg CY - Berlin, Germany DA - 09.10.2023 KW - Ellipsometry KW - Quality control KW - Metrology PY - 2023 AN - OPUS4-59837 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mull, Birte A1 - Sauerwald, T. A1 - Richter, Matthias A1 - Horn, Wolfgang A1 - Brödner, Doris A1 - Schultealbert, C. T1 - Development of a reproducibly emitting reference material for volatile organic compounds N2 - The aim of this study is the development of a reproducibly emitting reference material for volatile organic compounds (VOC). The first part of the work was carried out with styrene, for which supporting materials were successfully selected, doped and analyzed in test chambers. T2 - Indoor Air 2016 The 14th international conference of Indoor Air Quality and Climate CY - Ghent, Belgium DA - 03.07.2016 KW - Quality control KW - Emission test chamber KW - Indoor air KW - Quality assurance PY - 2016 SN - 978-0-9846855-5-4 AN - OPUS4-36849 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mull, Birte A1 - Sauerwald, T. A1 - Richter, Matthias A1 - Horn, Wolfgang A1 - Brödner, Doris A1 - Schultealbert, C. T1 - Development of a reproducibly emitting reference material for volatile organic compounds N2 - Volatile organic compounds (VOC) are ubiquitous in the indoor air, since they emit from materials used indoors. Investigations of these materials are mostly carried out in test chambers under controlled climatic conditions. Quality control of these test chamber measurements is important but there is a lack of commercially available homogenous reference materials. The approach of this study is to dope a supporting material with VOCs, which are then reproducibly released in measurable chamber air concentrations between 30 to 300 µg m ³. From several tested supporting materials vacuum grease (APIEZON M) was selected because of its very low own emissions. First tests were conducted with styrene. For the estimation of the initial emission and the emission over time FEM (finite element methods) modelling was used. Based on this, five samples with a surface of 7 cm2 and a thickness of 12 mm with a content of 1 ‰ styrene were investigated at (23 ± 2) °C and (50 ± 5) % relative humidity in the µ-chamber (3 samples) and 24 L test chambers (2 samples) for 28 days. Air samples were taken after 24 hours, 3, 7, 14, 21 and 28 days on Tenax TA® sorption tubes and analyzed by TD-GC-MS. The area specific emission rate (SERa) was calculated to compare the results from both chamber types. After 24 hours SERa was between 0.8 0.9 µg cm 2 h 1 (3800 4000 µg m 3) for the µ-chamber samples and between 0.9 1.1 µg cm 2 h 1 (300-370 µg m 3) for the 24 L test chamber samples. After 28 days the SERa was at 0.2 µg cm 2 h 1 for all samples. The relative standard deviation of the SERa was between 1 26 %. These results show the applicability of vacuum grease as supporting material and the favored starting concentration range could be achieved in the 24 L test chambers. T2 - Indoor Air 2016, the 14th international conference of Indoor Air Quality and Climate CY - Ghent, Belgium DA - 03.07.2016 KW - Emission test chamber KW - Indoor air KW - Quality assurance KW - Quality control PY - 2016 AN - OPUS4-36823 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -