TY - JOUR A1 - Waurischk, Tina A1 - Reinsch, Stefan A1 - Rouxel, T. A1 - Behrens, H. A1 - Deubener, J. A1 - Müller, Ralf T1 - Vacuum crack growth in alkali silicate glasses JF - Journal of non-crystalline solids N2 - Crack growth velocity in alkali silicate glasses was measured in vacuum across 10 orders of magnitude with double cantilever beam technique. Measured and literature crack growth data were compared with calculated intrinsic fracture toughness data obtained from Young´s moduli and the theoretical fracture surface energy estimated from chemical bond energies. Data analysis reveals significant deviations from this intrinsic brittle fracture behavior. These deviations do not follow simple compositional trends. Two opposing processes may explain this finding: a decrease in the apparent fracture surface energy due to stress-induced chemical changes at the crack tip and its increase due to energy dissipation during fracture. KW - Silicate glass KW - Brittle fracture KW - Crack growth KW - Calculated intrinsic fracture toughness PY - 2021 DO - https://doi.org/10.1016/j.jnoncrysol.2021.121094 SN - 0022-3093 VL - 572 SP - 1 EP - 8 PB - Elsevier CY - Amsterdam AN - OPUS4-53144 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilling, Markus A1 - Marschall, Niklas A1 - Niebergall, Ute A1 - Böhning, Martin T1 - An optical criterion for the assessment of Full-Notch Creep Test (FNCT) fracture surfaces N2 - The full-notch creep test (FNCT) is a common method to evaluate the environmental stress cracking (ESC) behavior of high-density polyethylene (PE-HD) container materials . The test procedure as specified in ISO 16770 provides a comparative measure of the resistance against ESC using the time to failure of specimens mechanically loaded in a well-defined liquid environment. Since the craze-crack damage mechanism underlying the ESC process is associated with brittle failure, the occurrence of globally brittle fracture surfaces is a prerequisite to consider an FNCT measurement as representative for ESC . Therefore, an optical evaluation of FNCT fracture surfaces concerning their brittleness is essential. Due to the experimental setup, an inevitable increase of the true mechanical stress and the associated appearance of small ductile parts on fracture surfaces is induced in any case. Hence, an FNCT experiment is considered as 'valid', if the corresponding fracture surface is predominantly brittle . Based on laser scanning microscopy (LSM) height data of FNCT fracture surfaces , a universal and easy-to-use phenomenological criterion was developed to assess the validity of distinct FNCT experiments. This criterion is supposed to facilitate a quick evaluation of FNCT results in practical routine testing. T2 - PPS Europe-Africa 2019 Regional Conference (PPS 2019) CY - Pretoria, South Africa DA - 18.11.2019 KW - Full-Notch Creep Test (FNCT) KW - Polyethylene, PE-HD KW - Fracture surface analysis KW - Environmental stress cracking (ESC) KW - Optical criterion KW - Brittle fracture PY - 2019 AN - OPUS4-50940 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Glushko, O. A1 - Funk, A. A1 - Maier-Kiener, A. A1 - Kraker, P. A1 - Krautz, M. A1 - Eckert, J. A1 - Waske, Anja T1 - Mechanical properties of the magnetocaloric intermetallic LaFe11.2Si1.8 alloy at different length scales JF - Acta materialia N2 - In this work the global and local mechanical properties of the magnetocaloric intermetallic LaFe11.2Si1.8 alloy are investigated by a combination of different testing and characterization techniques in order to shed light on the partly contradictory data in recent literature. Macroscale compression tests were performed to illuminate the global fracture behavior and evaluate it statistically. LaFe11.2Si1.8 demonstrates a brittle behavior with fracture strains below 0.6% and widely distributed fracture stresses of 180–620 MPa leading to a Weibull modulus of m = 2 to 6. The local mechanical properties, such as hardness and Young's modulus, of the main and secondary phases are examined by nanoindentation and Vickers microhardness tests. An intrinsic strength of the main magnetocaloric phase of at least 2 GPa is estimated. The significantly lower values obtained by compression tests are attributed to the detrimental effect of pores, microcracks, and secondary phases. Microscopic examination of indentation-induced cracks reveals that ductile α-Fe precipitates act as crack arrestors whereas pre-existing cracks at La-rich precipitates provide numerous ‘weak links’ for the initiation of catastrophic fracture. The presented systematic study extends the understanding of the mechanical reliability of La(Fe, Si)13 alloys by revealing the correlations between the mechanical behavior of macroscopic multi-phase samples and the local mechanical properties of the single phases KW - Nanoindentation KW - Compression test KW - Brittle fracture KW - Mechanical properties KW - Magnetocaloric effect PY - 2019 DO - https://doi.org/10.1016/j.actamat.2018.11.038 SN - 1359-6454 SN - 1873-2453 VL - 165 SP - 40 EP - 50 PB - Elsevier Ltd. AN - OPUS4-47306 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -