TY - CONF A1 - Brunner-Schwer, C. A1 - Rethmeier, Michael T1 - Laser-Plasma-Auftragschweißen als hybrides Beschichtungsverfahren für hohe Auftragsraten mit geringer thermischer Belastung N2 - Gut kombiniert: Laser-Plasma-Auftragschweißen Für den Schutz vor starkem abrasiven Verschleiß (Panzern) oder vor korrosiven Medien (Plattieren) sowie für das Auftragen einer Pufferlage können das Laser-Pulver-Auftragschweißen oder das Plasma-Pulver-Auftragschweißen zum Einsatz kommen. Während das Laser-Pulver-Auftragschweißen eine geringe thermische Belastung verspricht, ermöglicht das Plasma-Pulver-Auftragschweißen hohe Auftragraten. Wissenschaftler des Fraunhofer IPK erarbeiten neuartige Verfahrenskombinationen und Düsenkonzepte, die die jeweiligen Vorteile dieser bestehenden Verfahren vereinen und somit eine hohe Qualität und Effizienz garantieren. So kann beispielsweise die punktgenaue Energie der Laserstrahlung den Plasmalichtbogen stabilisieren und den Wärmeeintrag in das Bauteil besser kontrollieren. T2 - 5. PbA-Sitzung bei der GTV Verschleißschutz GmbH CY - Luckenbach, Germany DA - 21.03.2019 KW - Highspeed-plasma-laser-cladding KW - Wear resistance KW - NiCrBSi KW - Tungsten carbide KW - Deposition welding PY - 2019 AN - OPUS4-49243 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Brunner-Schwer, C. A1 - Graf, B. A1 - Rethmeier, Michael T1 - Laser-Plasma-Hybrid-Cladding: Possibilities in the combination of arc and laser for deposition welding N2 - Plasma-Transferred-Arc (PTA) welding is a process that enables high deposition rates, but also causes increased thermal 9 load on the component. Laser based Direct Energy Deposition (DED) welding, on the other hand, achieves a high level of 10 precision and thus comparatively low deposition rates, which can lead to high processing costs. Combining laser and arc 11 energy aims to exploit the respective advantages of both technologies. 12 In this study, different possibilities of this process combination are presented using a PTA system and a 2 kW disk laser. 13 This includes the combination in a common process zone as a highspeed plasma laser cladding technology (HPLC), which 14 achieves process speeds of 10 m/min. Besides that it is being examined whether a pre-running plasma arc can be used to 15 coat difficult-to-weld rail steel with a carbon content of 0.8 % due to a preheating effect. Furthermore, a smoothing of the 16 coating by a plasma arc following the laser is investigated. T2 - LiM 2019 CY - Aachen, Germany DA - 25.06.2019 KW - Plasma-Transferred-Arc KW - Direct Energy Deposition KW - Highspeed plasma KW - Laser cladding KW - Deposition welding PY - 2019 AN - OPUS4-49247 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Brunner-Schwer, C. A1 - Graf, B. A1 - Rethmeier, Michael T1 - Laser-Plasma-Hybrid-Cladding: Possibilities in the combination 2 of arc and laser for deposition welding T2 - Lasers in Manufacturing Conference 2019 N2 - Plasma-Transferred-Arc (PTA) welding is a process that enables high deposition rates, but also causes increased thermal load on the component. Laser based Direct Energy Deposition (DED) welding, on the other hand, achieves a high level of precision and thus comparatively low deposition rates, which can lead to high processing costs. Combining laser and arc energy aims to exploit the respective advantages of both technologies. In this study, different possibilities of this process combination are presented using a PTA system and a 2 kW disk laser. This includes the combination in a common process zone as a highspeed plasma laser cladding technology (HPLC), which achieves process speeds of 10 m/min. Besides that it is being examined whether a pre-running plasma arc can be used to coat difficult-to-weld rail steel with a carbon content of 0.8 % due to a preheating effect. Furthermore, a smoothing of the coating by a plasma arc following the laser is investigated. T2 - Lasers in Manufacturing 2019 CY - Munich, Germany DA - 24.06.2019 KW - Plasma-Transferred-Arc KW - Direct Energy Deposition KW - highspeed plasma laser cladding KW - deposition welding PY - 2019 SP - 1 EP - 9 AN - OPUS4-48724 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Brunner-Schwer, C. A1 - Graf, B. A1 - Schreiber, F. A1 - Rethmeier, Michael T1 - Highspeed-Plasma-Laser-Cladding als hybrides Beschichtungs-Verfahren N2 - Das Plasma-Pulver-Auftragschweißen ist ein Verfahren, dass hohe Auftragraten ermöglicht, jedoch auch eine erhöhte thermische Belastung des Bauteiles verursacht. Laser-Pulver-Auftragschweißen hingegen erreicht eine hohe Präzision und eine geringe Aufmischung, erfordert jedoch ein kostspieliges Hochleistungslasersystem und erreicht im Vergleich nur geringe Auftragraten, was zu hohen Verarbeitungskosten führt. Eine Kopplung von Laser- und Lichtbogenenergie in einer gemeinsamen Prozesszone zielt darauf ab, die jeweiligen Vorteile beider Technologien zu nutzen. Dies betrifft insbesondere die Effizienz der Wärmeausnutzung und der Nutzung des Zusatzwerkstoffs. Es wird ein Plasma-Laser-Hybrid-Prozess als Highspeed-Plasma-Laser-Cladding-Technologie (HPLC) für Beschichtungs- sowie Instandsetzungszwecke vorgestellt. Gezeigt werden Ergebnisse mit Prozessgeschwindigkeiten von 10 m/min bei Laserleistungen von 2 kW, dabei können Flächenraten von mehr als 1 m2/h erreicht werden. Effiziente Beschichtungen von großen Flächen, beispielsweise auf rotationssymmetrischen Bauteilen stellen ein relevantes Anwendungsfeld für diesen Technologieansatz dar. Die Nickelbasislegierung Inconel 625 wird als Korrosionsschutzwerkstoff eingesetzt. Im Rahmen der Verfahrensprüfung werden die hergestellten Beschichtungen einer EDX Messung unterzogen. Prozesscharakteristische Kenngrößen wie z.B. die Auftragrate werden vorgestellt und vor dem Hintergrund wirtschaftlicher Kennzahlen diskutiert. Zusätzlich werden die Aufmischung, Spurgeometrie und Wärmeeinflusszone der Spuren und Schichten ausgewertet. Im Vergleich zum Laser-Pulver-Auftragschweißen werden Spuren bei hohen Prozessgeschwindigkeiten mit einer hohen Auftragrate erzeugt. T2 - DVS Congress CY - Rostock, Germany DA - 16.09.2019 KW - Highspeed-plasma-laser-cladding KW - Korrosionsschutz KW - Laser KW - Plasma KW - Auftragschweißen PY - 2019 AN - OPUS4-49363 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Brunner-Schwer, C. ED - Graf, B. ED - Schreiber, F. ED - Rethmeier, Michael T1 - Highspeed-Plasma-Laser Cladding (HPLC) als hybrides Beschichtungsverfahren: Evaluierung des Einsatzpotentials für hohe Prozessgeschwindigkeiten T2 - Große Schweißtechnische Tagung 2019 N2 - Das Plasma-Pulver-Auftragschweißen ist ein Verfahren, dass hohe Auftragraten ermöglicht, jedoch auch eine erhöhte thermische Belastung des Bauteiles verursacht. Laser-Pulver- Auftragschweißen hingegen erreicht eine hohe Präzision und eine geringe Aufmischung, erfordert jedoch ein kostspieliges Hochleistungslasersystem und erreicht im Vergleich nur geringe Auftragraten, was zu hohen Verarbeitungskosten führt. Eine Kopplung von Laser- und Lichtbogenenergie in einer gemeinsamen Prozesszone zielt darauf ab, die jeweiligen Vorteile beider Technologien zu nutzen. Dies betrifft insbesondere die Effizienz der Wärmeausnutzung und der Nutzung des Zusatzwerkstoffs. Es wird ein Plasma-Laser-Hybrid-Prozess als Highspeed-Plasma-Laser-Cladding-Technologie (HPLC) für Beschichtungs- sowie Instandsetzungszwecke vorgestellt. Gezeigt werden Ergebnisse mit Prozessgeschwindigkeiten von 10 m/min bei Laserleistungen von 2 kW, dabei können Flächenraten von mehr als 1 m2/h erreicht werden. Effiziente Beschichtungen von großen Flächen, beispielsweise auf rotationssymmetrischen Bauteilen stellen ein relevantes Anwendungsfeld für diesen Technologieansatz dar. Die Nickelbasislegierung Inconel 625 wird als Korrosionsschutzwerkstoff eingesetzt. Im Rahmen der Verfahrensprüfung werden die hergestellten Beschichtungen einer EDX Messung unterzogen. Prozesscharakteristische Kenngrößen wie z.B. die Auftragrate werden vorgestellt und vor dem Hintergrund wirtschaftlicher Kennzahlen diskutiert. Zusätzlich werden die Aufmischung, Spurgeometrie und Wärmeeinflusszone der Spuren und Schichten ausgewertet. Im Vergleich zum Laser-Pulver-Auftragschweißen werden Spuren bei hohen Prozessgeschwindigkeiten mit einer hohen Auftragrate erzeugt. T2 - DVS Congress 2019 CY - Rostock, Germany DA - 16.09.2019 KW - Highspeed-plasma-laser-cladding KW - Korrosionsschutz KW - Laser KW - Plasma KW - Auftragschweißen PY - 2019 SP - n.b. AN - OPUS4-49364 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Petrat, T. A1 - Brunner-Schwer, C. A1 - Graf, B. A1 - Rethmeier, Michael T1 - Microstructure of Inconel 718 parts with constant mass energy input manufactured with direct energy deposition JF - Procedia Manufacturing - ScienceDirect N2 - The laser-based direct energy deposition (DED) as a technology for additive manufacturing allows the production of near net shape components. Industrial applications require a stable process to ensure reproducible quality. Instabilities in the manufacturing process can lead to faulty components which do not meet the required properties. The DED process is adjusted by various parameters such as laser power, velocity, powder mass flow and spot diameter, which interact with each other. A frequently used comparative parameter in welding is the energy per unit length and is calculated from the laser power and the velocity in laser welding. The powder per unit length comparative parameter in the DED process has also be taken into account, because this filler material absorbs energy in addition to the base material. This paper deals with the influence of mass energy as a comparative parameter for determining the properties of additively manufactured parts. The same energy per unit length of 60 J/mm as well as the same powder per unit length of 7.2 mg/mm can be adjusted with different parameter sets. The energy per unit length and the powder per unit length determine the mass energy. The laser power is varied within the experiments between 400 W and 900 W. Energy per unit length and powder per unit length are kept constant by adjusting velocity and powder mass flow. Using the example of Inconel 718, experiments are carried out with the determined parameter sets. In a first step, individual tracks are produced and analyzed by means of micro section. The geometry of the tracks shows differences in height and width. In addition, the increasing laser power leads to a higher dilution of the base material. To determine the suitability of the parameters for additive manufacturing use, the individual tracks are used to build up parts with a square base area of 20x20 mm². An investigation by Archimedean principle shows a higher porosity with lower laser power. By further analysis of the micro sections, it can be seen that at low laser power, connection errors occur between the tracks. The results show that laser power, velocity and powder mass flow have to be considered in particular, because a constant mass energy can lead to different geometric as well as microscopic properties. KW - Direct energy deposition KW - Porosity KW - Inconel 718 KW - Additive manufacturing KW - Laser metal deposition PY - 2019 SN - 2351-9789 SP - 1 EP - 12 PB - Elsevier B.V. AN - OPUS4-50007 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -