TY - JOUR A1 - Epishin, A. A1 - Link, T. A1 - Nolze, Gert T1 - SEM investigation of interfacial dislocations in nickel-base superalloys JF - Journal of Microscopy N2 - A new technique for investigation of interfacial dislocations in nickel-base superalloys by scanning electron microscopy is presented. At high temperatures the pressure of interfacial dislocations against the gamma/gamma'-interface causes grooves. This 'fingerprint of the dislocation network' is visualized by deep selective etching, which removes the gamma'-phase down to the gamma/gamma'-interface. Compared with transmission electron microscopy, the proposed method has important advantages: observation of large sample areas, no superposition of dislocations lying in different specimen depths, possibility of three-dimensional view of dislocation configurations, information about the dislocation mobility, reduced time for preparation and visualization. The method can be applied for multiphase materials where the interface is grooved by interfacial dislocations. KW - Dislocation structure KW - Interface KW - Nickel alloys KW - SEM PY - 2007 VL - 228 IS - 2 SP - 110 EP - 117 PB - The Royal Microscopical Society AN - OPUS4-38016 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epishin, A. A1 - Link, T. A1 - Svetlov, I. L. A1 - Nolze, Gert A1 - Saliwan Neumann, Romeo A1 - Lucas, H. T1 - Mechanism of porosity growth during homogenisation in single crystal nickel-based superalloys JF - International Journal of Materials Research N2 - Several mechanisms for porosity growth in single crystal nickel-based superalloys during homogenisation heat treatment have been proposed in the literature. They were carefully checked using different experimental methods, namely quantitative light microscopy, scanning electron microscopy, transmission electron microscopy, X-ray diffraction and density measurements. It is shown that the main mechanism is the Kirkendall–Frenkel effect, i.e. generation of voids due to uncompensated efflux of Al atoms from dissolving γ/γ′-eutectic areas. The Al diffusion is supported by the afflux of vacancies from surrounding γ-matrix which results in porosity growth. This conclusion is confirmed by the estimation of the vacancy afflux towards the dissolving eutectic. KW - Ni-base superalloy KW - Eutectic KW - Vacancies KW - Porosity PY - 2013 VL - 104 IS - 8 SP - 776 EP - 782 PB - Carl Hanser Verlag AN - OPUS4-37983 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epishin, A. I. A1 - Link, T. A1 - Nolze, Gert A1 - Svetlov, I. L. A1 - Bokshtein, B. S. A1 - Rodin, A. O. A1 - Saliwan Neumann, Romeo A1 - Oder, Gabriele T1 - Diffusion processes in multicomponent nickel-base superalloy-nickel system JF - The Physics of Metals and Metallography N2 - Optical and scanning electron microscopy, as well as electron microprobe analysis and electron backscatter diffraction, have been used to study diffusion processes that occur in a diffusion pair that consistsof a single-crystal CMSX-10 nickel-base superalloy and polycrystalline nickel, at temperatures of 1050–1250°C. It has been found that, in this system, the distributions of γ-stabilizing elements (Cr, Co, W, and Re) are described by the Boltzmann solution for diffusion between two semiinfinite plates of a binary alloy. The processing of these distributions has shown that the diffusion coefficients of Cr, Co, W, and Re in the multicomponent system are close to those in binary alloys of these elements with Ni. The diffusion redistribution of the elements leads to the dissolution of the γ′ phase in the nickel-base superalloy, growth of nickel grains toward the superalloy constituent of the diffusion pair, and the formation of porosity on both sides of the migrating interface, which is determined from a crystal misorientation of the alloy single crystal and nickel grains. KW - Ni-base superalloy KW - Interface KW - Diffusion KW - Phase transformation KW - Porosity PY - 2014 SN - 0031-918X VL - 115 IS - 1 SP - 21 EP - 29 AN - OPUS4-37980 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epishin, A. I. A1 - Petrushin, N. V. A1 - Link, T. A1 - Nolze, Gert A1 - Loshchinin, Yu. V. A1 - Gerstein, G. T1 - Thermal stability of the structure of a heat-resistant cobalt alloy hardened with intermetallic γ'-phase precipitates JF - Russian Metallurgy N2 - The thermal stability of the microstructure of a heat-resistant cobalt alloy, which consists of a γ solid solution strengthened with γ'-phase precipitates, has been studied. The temperature behavior of the dissolution of the hardening γ' phase and the kinetics of its coarsening at 700 and 800°C have been determined. It is found that, during prolonged annealing at 800°C, the γ' → β phase transformation occurs. KW - Superalloy KW - Microstructure KW - Hardening KW - Electron backscatter diffraction KW - TEM PY - 2016 DO - https://doi.org/10.1134/S0036029516040078 SN - 0036-0295 VL - 2016 IS - 4 SP - 286 EP - 291 PB - Pleiades Publishing AN - OPUS4-37768 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -