TY - JOUR A1 - Obaton, A-F. A1 - Fain, J. A1 - Djemaï, M. A1 - Meinel, Dietmar A1 - Léonard, Fabien A1 - Mahé, E. A1 - Lécuelle, B. A1 - Fouchet, J-J. A1 - Bruno, Giovanni T1 - In vivo XCT bone characterization of lattice structured implants fabricated by additive manufacturing JF - Heliyon N2 - Several cylindrical specimens and dental implants, presenting diagonal lattice structures with different cell sizes (600, 900 and 1200 µm) were additively manufactured by selective laser melting process. Then they were implanted for two months in a sheep. After removal, they were studied by Archimedes’ method as well as X-ray computed tomography in order to assess the penetration of bone into the lattice. We observed that the additive manufactured parts were geometrically conform to the theoretical specifications. However, several particles were left adhering to the surface of the lattice, thereby partly or entirely obstructing the cells. Nevertheless, bone penetration was clearly visible. We conclude that the 900 µm lattice cell size is more favourable to bone penetration than the 1200 µm lattice cell size, as the bone penetration is 84 % for 900 µm against 54 % for 1200 µm cell structures. The lower bone penetration value for the 1200 µm lattice cell could possibly be attributed to the short residence time in the sheep. Our results lead to the conclusion that lattice implants additively manufactured by selective laser melting enable better bone integration. KW - Biomedical engineering KW - Dentistry KW - Medical imaging KW - X-ray computer tomography PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-418648 DO - https://doi.org/10.1016/j.heliyon.2017.e00374 SN - 2405-8440 IS - 3 SP - Article e00374, 1 EP - 21 PB - Elsevier Limited CY - 125 London Wall London, EC2Y 5AS United Kingdom AN - OPUS4-41864 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Obaton, A.-F. A1 - Fain, J. A1 - Meinel, Dietmar A1 - Tsamos, Athanasios A1 - Léonard, F. A1 - Lécuelle, B. A1 - Djemaï, M. T1 - In Vivo Bone Progression in and around Lattice Implants Additively Manufactured with a New Titanium Alloy JF - Applied sciences N2 - The osseointegration in/around additively manufactured (AM) lattice structures of a new titanium alloy, Ti–19Nb–14Zr, was evaluated. Different lattices with increasingly high sidewalls gradually closing them were manufactured and implanted in sheep. After removal, the bone–interface implant (BII) and bone–implant contact (BIC) were studied from 3D X-ray computed tomography images. Measured BII of less than 10 µm and BIC of 95% are evidence of excellent osseointegration. Since AMnaturally leads to a high-roughness surface finish, the wettability of the implant is increased. The new alloy possesses an increased affinity to the bone. The lattice provides crevices in which the biological tissue can jump in and cling. The combination of these factors is pushing ossification beyond its natural limits. Therefore, the quality and speed of the ossification and osseointegration in/around these Ti–19Nb–14Zr laterally closed lattice implants open the possibility of bone spline key of prostheses. This enables the stabilization of the implant into the bone while keeping the possibility of punctual hooks allowing the implant to be removed more easily if required. Thus, this new titanium alloy and such laterally closed lattice structures are appropriate candidates to be implemented in a new generation of implants. KW - Osseointegration KW - X-ray computed tomography KW - Additive manufacturing KW - Machine learning segmentation PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-577066 DO - https://doi.org/10.3390/app13127282 VL - 13 IS - 12 SP - 1 EP - 18 PB - MDPI CY - Basel, Switzerland AN - OPUS4-57706 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -