TY - JOUR A1 - Gluth, Gregor A1 - Ebell, Gino A1 - Hlavacek, Petr A1 - Mietz, Jürgen T1 - Chloride‐induced steel corrosion in alkali‐activated fly ash mortar: Increased propensity for corrosion initiation at defects JF - Materials and Corrosion N2 - Chloride contents at the steel–mortar interface that initiate steel corrosion were determined for carbon steel in alkali‐activated fly ash mortar for three different exposure conditions: exposure to 1 M NaCl solution; leaching in deionized water and then exposure to 1 M NaCl solution; and leaching in deionized water, aging in air at 20°C and natural CO2 concentration, and then exposure to 1 M NaCl solution. For comparison, a Portland cement mortar, exposed to 1 M NaCl solution, was studied. The median values of the corrosion‐initiating chloride contents (average over the full length of the rebar) in the alkali‐activated fly ash mortar varied between 0.35 and 1.05 wt% Cl with respect to binder, consistently lower than what was obtained for the Portland cement mortar, but with no clear trend regarding the exposure conditions. For most of the alkali‐activated fly ash mortar specimens, preferential corrosion at the connection between the working electrode and the external measurement setup was observed, while preferential corrosion did not occur for the Portland cement mortar. Scanning electron microscopy and auxiliary experiments in synthetic solutions indicated that this behavior was caused by inhomogeneities at the steel–mortar interface in the alkali‐activated mortar, likely due to its peculiar rheological properties in the fresh state. KW - Alkali-activated materials KW - Steel corrosion KW - Critical chloride content KW - Steel-concrete interface PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-507268 DO - https://doi.org/10.1002/maco.202011541 VL - 71 IS - 5 SP - 749 EP - 758 PB - Wiley-VCH AN - OPUS4-50726 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Valet, Svenja A1 - Burkert, Andreas A1 - Ebell, Gino A1 - Babutzka, Martin T1 - Determination of the corrosion product layer resistance on zinc and electrolytically galvanized steel samples by using gel electrolytes JF - Electrochimica Acta N2 - Although zinc and zinc coatings have been widely used for corrosion protection for decades new zinc coatings are constantly being developed. Characterizing the corrosion protectiveness of these new coatings, however, should not be underestimated. While exposure tests are time intensive, cyclic tests can only be used for a very limited field of application. Thus, electrochemical measurements provide both an efficient and an effective alternative. Conventional aqueous bulk electrolytes influence the surface layers of a tested zinc coating and are therefore not reliable. Gel electrolytes, however, have evolved over the last few years, are minimally invasive and provide reliable results. This work describes experiments with gel electrolytes made of agar. Unlike previous work, it proposes a composition of gel electrolyte for minimally invasive description of the protective power of naturally formed oxide layers on zinc and zinc coatings. Therefore, as a first part, the gel electrolyte made of agar is verified as a method for zinc and zinc-coated samples. Afterwards, this paper introduces the corrosion product layer resistance RL as a promising parameter to evaluate the protective power of zinc coatings. Results are verified with EIS and FTIR measurements. An example on a representative zinc coating demonstrates the practical application. KW - Gel electrolytes KW - Agar KW - Zinc coatings KW - Atmospheric exposure KW - Corrosion PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-526053 DO - https://doi.org/10.1016/j.electacta.2021.138191 SN - 0013-4686 VL - 385 SP - 138191 PB - Elsevier Ltd. AN - OPUS4-52605 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heyn, A. A1 - Meist, M. A1 - Michael, O. A1 - Babutzka, M. A1 - Valet, Svenja A1 - Ebell, Gino T1 - Electrochemical characterization of surfaces of galvanized steels under different exposure conditions using gel electrolytes JF - Materials and Corrosion N2 - The corrosion behavior of galvanized steels and zinc components under atmospheric exposure depends mostly on the corrosion product‐based cover layer formation under the prevailing conditions. The use of agar‐based gel electrolytes makes it possible to use electrochemical methods to obtain a characteristic value from these cover layers that describe their current and future protective capacity. It is shown here that different states of galvanized steel can be distinguished very well under laboratory conditions and that this method is also suitable for use under practical conditions. Based on the characteristic values and assuming future time of wetness, it is very easy to draw up a forecast for the future corrosion rate, which provides plausible values. KW - Materials Chemistry KW - Metals and Alloys KW - Surfaces, Coatings and Films KW - Mechanical Engineering KW - Mechanics of Materials KW - Environmental Chemistry KW - Corrosion KW - Znc PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-599234 DO - https://doi.org/10.1002/maco.202414389 SP - 1 EP - 16 PB - Wiley VHC-Verlag AN - OPUS4-59923 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -