TY - JOUR A1 - Lozano, Daniel A1 - Bulling, Jannis A1 - Gravenkamp, Hauke A1 - Birk, Carolin T1 - Domain decoupling implementation for efficient ultrasonic wave simulations using scaled boundary finite elements and the mortar method JF - Computer Methods in Applied Mechanics and Engineering N2 - We introduce a novel approach that combines the scaled boundary finite element method (SBFEM) with a mortar coupling to enhance the computational modelling of elastic wave propagation and interaction with local features in the ultrasonic range. The key objective is to achieve decoupling between different regions of interest, enabling independent meshes for the zones where waves either propagate or interact with localised discontinuities in the elastic media. This decoupling allows us to exploit the benefits offered by various SBFEM formulations. Thus, we can select the most suitable solution for each specific region. An important concept we emphasise is the differentiation between the near field and far field regions. The near field encompasses zones where the precise representation of small features compared to the wavelength is crucial. At the same time, the far field comprises homogeneous regions where the waves propagate without interactions, eventually radiating towards infinity if the domain is unbounded. By separating these two zones, we can improve the computational performance by employing finer discretisation only where necessary. Furthermore, this decoupling enables the reuse of far field models in parametric analyses, making it highly valuable for scenarios focused particularly on local elastic wave interactions. This approach offers considerable potential in such cases. The modelling technique is validated, and its potential is demonstrated through practical applications. KW - Computer Science Applications KW - General Physics and Astronomy KW - Mechanical Engineering KW - Mechanics of Materials KW - Computational Mechanics PY - 2023 DO - https://doi.org/10.1016/j.cma.2023.116465 SN - 0045-7825 VL - 417 IS - Part A SP - 1 EP - 21 PB - Elsevier BV AN - OPUS4-58478 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -