TY - JOUR A1 - Andreoli, A. F. A1 - Fantin, Andrea A1 - Kasatikov, S. A1 - Bacurau, V. P. A1 - Widom, M. A1 - Gargarella, P. A1 - Mazzer, E. M. A1 - Woodcock, T. G. A1 - Nielsch, K. A1 - Coury, F. G. T1 - The impact of chemical short-range order on the thermophysical properties of medium- and high-entropy alloys N2 - The unusual behavior observed in the coefficient of thermal expansion and specific heat capacity of CrFeNi, CoCrNi, and CoCrFeNi medium/high-entropy alloys is commonly referred to as the K-state effect. It is shown to be independent of the Curie temperature, as demonstrated by temperature-dependent magnetic moment measurements. CoCrFeNi alloy is chosen for detailed characterization; potential reasons for the K-state effect such as texture, recrystallization, and second-phase precipitation are ruled out. An examination of the electronic structure indicates the formation of a pseudo-gap in the Density of States, which suggests a specific chemical interaction between Ni and Cr atoms upon alloying. Hybrid Monte Carlo/Molecular Dynamic (MC/MD) simulations indicate the presence of non-negligible chemical short-range order (CSRO). Local lattice distortions are shown to be negligible, although deviations around Cr and Ni elements from those expected in a fully disordered structure are experimentally observed by X-ray absorption spectroscopy. The determined bonding distances are in good agreement with MC/MD calculations. A mechanism is proposed to explain the anomalies and calorimetric experiments and their results are used to validate the mechanism. KW - Mechanical Engineering KW - Mechanics of Materials KW - General Materials Science PY - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-595869 SN - 0264-1275 VL - 238 SP - 1 EP - 15 PB - Elsevier B.V. AN - OPUS4-59586 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Aristia, Gabriela A1 - Le, Quynh Hoa A1 - Nofz, Marianne A1 - Sojref, Regine A1 - Bäßler, Ralph T1 - Study of Al2O3 Sol-Gel Coatings on X20Cr13 in Artificial North German Basin Geothermal Water at 150 °C N2 - Al2O3 has been widely used as a coating in industrial applications due to its excellent chemical and thermal resistance. Considering high temperatures and aggressive mediums exist in geothermal systems, Al2O3 can be a potential coating candidate to protect steels in geothermal applications. In this study, γ-Al2O3 was used as a coating on martensitic steels by applying AlOOH sol followed by a heat treatment at 600 °C. To evaluate the coating application process, one-, two-, and three-layer coatings were tested in the artificial North German Basin (NGB), containing 166 g/L Cl−, at 150 °C and 1 MPa for 168 h. To reveal the stability of the Al2O3 coating in NGB solution, three-layer coatings were used in exposure tests for 24, 168, 672, and 1296 h, followed by surface and cross-section characterization. SEM images show that the Al2O3 coating was stable up to 1296 h of exposure, where the outer layer mostly transformed into boehmite AlOOH with needle-like crystals dominating the surface. Closer analysis of cross-sections showed that the interface between each layer was affected in long-term exposure tests, which caused local delamination after 168 h of exposure. In separate experiments, electrochemical impedance spectroscopy (EIS) was performed at 150 °C to evaluate the changes of coatings within the first 24 h. Results showed that the most significant decrease in the impedance is within 6 h, which can be associated with the electrolyte penetration through the coating, followed by the formation of AlOOH. Here, results of both short-term EIS measurements (up to 24 h) and long-term exposure tests (up to 1296 h) are discussed. KW - Al2O3 KW - Geothermal KW - Martensitic steels KW - Behmite KW - Corrosion PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-525551 SN - 2079-6412 VL - 11 IS - 5 SP - 526 PB - MDPI CY - Basel AN - OPUS4-52555 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bayerlein, Bernd A1 - Hanke, T. A1 - Muth, Thilo A1 - Riedel, Jens A1 - Schilling, Markus A1 - Schweizer, C. A1 - Skrotzki, Birgit A1 - Todor, A. A1 - Moreno Torres, Benjami A1 - Unger, Jörg F. A1 - Völker, Christoph A1 - Olbricht, Jürgen T1 - A Perspective on Digital Knowledge Representation in Materials Science and Engineering N2 - The amount of data generated worldwide is constantly increasing. These data come from a wide variety of sources and systems, are processed differently, have a multitude of formats, and are stored in an untraceable and unstructured manner, predominantly in natural language in data silos. This problem can be equally applied to the heterogeneous research data from materials science and engineering. In this domain, ways and solutions are increasingly being generated to smartly link material data together with their contextual information in a uniform and well-structured manner on platforms, thus making them discoverable, retrievable, and reusable for research and industry. Ontologies play a key role in this context. They enable the sustainable representation of expert knowledge and the semantically structured filling of databases with computer-processable data triples. In this perspective article, we present the project initiative Materials-open-Laboratory (Mat-o-Lab) that aims to provide a collaborative environment for domain experts to digitize their research results and processes and make them fit for data-driven materials research and development. The overarching challenge is to generate connection points to further link data from other domains to harness the promised potential of big materials data and harvest new knowledge. KW - Data infrastructures KW - Digital representations KW - Digital workflows KW - Knowledge graphs KW - Materials informatics KW - Ontologies KW - Vocabulary providers PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-546729 SN - 1438-1656 SP - 1 EP - 14 PB - Wiley-VCH GmbH CY - Weinheim AN - OPUS4-54672 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bender, R. A1 - Féron, D. A1 - Mills, D. A1 - Ritter, S. A1 - Bäßler, Ralph A1 - Bettge, Dirk A1 - de Graeve, I. A1 - Dugstad, A. A1 - Grassini, S. A1 - Hack, T. A1 - Halama, M. A1 - Han, E.-H. A1 - Harder, T. A1 - Hinds, G. A1 - Kittel, J. A1 - Krieg, R. A1 - Leygraf, C. A1 - Martinelli, L. A1 - Mol, A. A1 - Neff, D. A1 - Nilsson, J.-O. A1 - Odnevall, I. A1 - Paterson, S. A1 - Paul, S. A1 - Prošek, T. A1 - Raupach, M. A1 - Revilla, R. I. A1 - Ropital, F. A1 - Schweigart, H. A1 - Szala, E. A1 - Terryn, H. A1 - Tidblad, J. A1 - Virtanen, S. A1 - Volovitch, P. A1 - Watkinson, D. A1 - Wilms, M. A1 - Winning, G. A1 - Zheludkevich, M. T1 - Corrosion challenges towards a sustainable society N2 - A global transition towards more sustainable, affordable and reliable energy systems is being stimulated by the Paris Agreement and the United Nation's 2030 Agenda for Sustainable Development. This poses a challenge for the corrosion industry, as building climate‐resilient energy systems and infrastructures brings with it a long‐term direction, so as a result the long‐term behaviour of structural materials (mainly metals and alloys) becomes a major prospect. With this in mind “Corrosion Challenges Towards a Sustainable Society” presents a series of cases showing the importance of corrosion protection of metals and alloys in the development of energy production to further understand the science of corrosion, and bring the need for research and the consequences of corrosion into public and political focus. This includes emphasis on the limitation of greenhouse gas emissions, on the lifetime of infrastructures, implants, cultural heritage artefacts, and a variety of other topics. KW - Corrosion KW - Corrosion costs KW - Corrosion protection KW - Preventive strategies PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-554801 SN - 1521-4176 VL - 73 IS - 11 SP - 1730 EP - 1751 PB - Wiley-VCH CY - Weinheim AN - OPUS4-55480 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bettge, Dirk A1 - Schmies, Lennart T1 - Die Fraktographische Online-Datenbank der AG Fraktographie – Entwicklungsstand und Planung T1 - The WG Fractography Online Database – Stage of Development and Planning N2 - Die AG Fraktographie im DVM/DGM-Gemeinschaftsgremium „Elektronenmikroskopie in der Materialforschung“ betreibt seit 2013 eine fraktographische online-Datenbank („FractoDB“), die für das interessierte Fachpublikum kostenfrei zur Verfügung steht. Die Analyse und Bewertung von Bruchflächen und der darauf befindlichen Bruchmerkmale ist ein wichtiger Teilaspekt der Schadensanalyse bei der Suche nach Schadensmechanismen und Schadensursachen. Risse und Brüche an realen Bauteilen können nur dann bewertet werden, wenn gut dokumentierte Vergleichsbrüche aus Laborversuchen zur Verfügung stehen, sei es an Proben oder an Vergleichs-Bauteilen. Daher trägt die AG Fraktographie Bildmaterial zusammen, führt systematisch Laborversuche und Ringversuche durch und analysiert Brüche aus Schadensfällen. Die gewonnenen Daten werden zu Datensätzen zusammengestellt und über die Datenbank zugänglich gemacht. Derzeit ist ein Bestand von über 400 Datensätzen mit insgesamt über 4.500 Bildern verfügbar, welcher durchsucht werden kann und in Anlehnung an die VDI 3822 organisiert ist. Weitere Aktivitäten der AG Fraktographie, die in der FractoDB abgebildet werden, sind u.a. die Entwicklung einer fraktographischen Symbolik und die Analyse von Bruchmerkmalen mittels Machine Learning. Über die aktuellen Ergebnisse und Planungen wird berichtet. N2 - Since 2013, the AG Fraktographie (Working Group (WG) Fractography) in the DVM/DGM Joint Committee “Elektronenmikroskopie in der Materialforschung” (Electron Microscopy in Materials Research) maintains a fractographic online database (“FractoDB”) available to interested professionals. When it comes to identifying failure mechanisms and causes of damage, the analysis and evaluation of fracture surfaces and their characteristics constitute important aspects of the failure analysis. Cracks and fractures in real components can only be assessed if well-documented comparative fractures from laboratory tests are available – be it in samples or in comparison components. The WG Fractography therefore gathers image material, systematically carries out laboratory and round robin tests, and analyzes fractures from damage cases. From the thus obtained data, datasets are compiled and made available via the database. Currently, a browsable inventory of more than 400 datasets with a total of more than 4500 images is available. It is organized in line with guideline VDI 3822. Other activities of the WG Fractography represented in the FractoDB include, amongst others, the development of a fractographic set of symbols and the analysis of fracture characteristics using machine learning. This contributbution reports on latest results and plans. KW - Fraktographie KW - Datenbank KW - Schadensanalyse KW - Bruchflächen KW - Machine Learning PY - 2023 U6 - https://doi.org/10.1515/pm-2023-0048 SN - 0032-678X VL - 60 IS - 9 SP - 569 EP - 579 PB - De Gruyter CY - Berlin AN - OPUS4-58200 LA - mul AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Blank, Robin A1 - Nitschke, Heike A1 - Saliwan Neumann, Romeo A1 - Kranzmann, Axel T1 - Materialographic Preparation of Salt N2 - Molten salt containing systems gain in importance for sustainable energy use and production. For research and development, interactions of molten salts with potential container materials are of major interest. This article introduces preparation procedures to display an intact metal and salt microstructure and their interface using light optical microscopy and scanning electron microscopy. The exemplary material combination is the ternary salt mixture NaCl-KCl-MgCl2 and the low alloyed steel 1.4901 (T92) with a maximum service temperature of 550 °C. These are potential elements/materials for use in latent heat thermal energy storages. KW - Molten salt KW - Corrosion KW - Steel KW - Aging KW - Dry preparation PY - 2021 U6 - https://doi.org/10.1515/pm-2022-0058 VL - 59 IS - 10 SP - 628 EP - 640 PB - De Gruyter AN - OPUS4-56048 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Böllinghaus, Thomas A1 - Lüders, V. A1 - Nolze, Gert T1 - Microstructural insights into natural silver wires N2 - Due to the increasing global demand for pure silver, native wire silver aggregates in very high purities are gaining more industrial attention. Up to the present, no substantial metallurgical Investigation of natural wire silver exists in the accessible literature. To convey urgently needed cross-disciplinary fundamental knowledge for geoscientists and metallurgical engineers, twenty natural wire silver specimens from eight different ore deposits have been investigated in detail for the first time by EBSD (Electron Back Scattering Diffraction), supported by light microscopy and micro-probe analyses. The improved understanding of the natural silver wire microstructure provides additional Information regarding the growth of natural silver aggregates in comparison to undesired artificial growth on electronic devices. Clear evidence is provided that natural silver curls and hairs exhibit a polycrystalline face-centered cubic microstructure associated with significant twinning. Although the investigated natural wire silver samples have relatively high purity (Ag > 99.7 wt.-%), they contain a variety of trace elements such as, S, Cu, Mn, Ni, Zn, Co and Bi, As and Sb. Additionally, Vickers micro-hardness measurements are provided for the first time which revealed that natural silver wires and curls are softer than it might be expected from conversion of the general Mohs hardness of 2.7. KW - Natural silver wires PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-451655 UR - http://www.nature.com/articles/s41598-018-27159-w SN - 2045-2322 VL - 8 IS - 1 SP - Article 9053, 1 EP - 9 PB - nature publishing group CY - London, United Kingdom AN - OPUS4-45165 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cao, L. A1 - Thome, P. A1 - Agudo Jácome, Leonardo A1 - Somsen, C. A1 - Cailletaud, G. A1 - Eggeler, G. T1 - On the influence of crystallography on creep of circular notched single crystal superalloy specimens N2 - The present work contributes to a better understanding of the effect of stress multiaxiality on the creep behavior of single crystal Ni-base superalloys. For this purpose we studied the creep deformation and rupture behavior of double notched miniature creep tensile specimens loaded in three crystallographic directions [100], [110] and [111] (creep conditions: 950 °C and 400 MPa net section stress). Crystal plasticity finite element method (CPFEM) was used to analyze the creep stress and strain distributions during creep. Double notched specimens have the advantage that when one notch fails, the other is still intact and allows to study a material state which is close to rupture. No notch root cracking was observed, while microstructural damage (pores and micro cracks) were frequently observed in the center of the notch root region. This is in agreement with the FEM results (high axial stress and high hydrostatic stress in the center of the notched specimen). Twinning was observed in the notch regions of [110] and [111] specimens, and <112> {111} twins were detected and analyzed using orientation imaging scanning electron microscopy. The present work shows that high lattice rotations can be detected in SXs after creep fracture, but they are associated with the high strains accumulated in the final rupture event. KW - Single crystal Ni-Base superalloys KW - Double notched creep specimen KW - Stress distribution KW - Lattice rotation KW - Cracks PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-506060 SN - 0921-5093 VL - 782 SP - 139255 PB - Elsevier B. V. AN - OPUS4-50606 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chandra, K. A1 - Dörfel, Ilona A1 - Wollschläger, N. A1 - Kranzmann, Axel T1 - Microstructural investigation using advanced TEM techniques of inner ocide layers formed on T92 steel in oxyfuel environment N2 - T92 steel was oxidized at 650 °C for 1000 h in dry and wet oxyfuel gases. The microstructure of inner oxide layer was investigated using scanning transmission electron microscopy and energy dispersive spectroscopy on thin lamellas of oxide cross-sections. The oxides were composed of fine equiaxed grains and separated into Fe-rich and Cr-rich regions. Fe-rich regions were wustite and iron sulphide while Cr-rich regions consisted of Fe-Cr spinel with different stoichiometries. Precipitates of (W,Mo)-rich oxides were formed within the oxide scale and beneath the oxide/alloy interface. Often iron sulphide and (W,Mo)-rich oxide were surrounded by Cr-rich spinel. KW - Steel KW - STEM KW - High temperature corrosion KW - Oxidation KW - Internal oxidation PY - 2019 U6 - https://doi.org/10.1016/j.corsci.2018.12.008 SN - 0010-938X SN - 1879-0496 VL - 148 SP - 94 EP - 109 PB - Elsevier AN - OPUS4-47423 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Charmi, Amir A1 - Falkenberg, Rainer A1 - Ávila, Luis A1 - Mohr, Gunther A1 - Sommer, Konstantin A1 - Ulbricht, Alexander A1 - Sprengel, Maximilian A1 - Saliwan Neumann, Romeo A1 - Evans, Alexander A1 - Skrotzki, Birgit T1 - Mechanical anisotropy of additively manufactured stainless steel 316L: An experimental and numerical study N2 - The underlying cause of mechanical anisotropy in additively manufactured (AM) parts is not yet fully understood and has been attributed to several different factors like microstructural defects, residual stresses, melt pool boundaries, crystallographic and morphological textures. To better understand the main contributing factor to the mechanical anisotropy of AM stainless steel 316L, bulk specimens were fabricated via laser powder bed fusion (LPBF). Tensile specimens were machined from these AM bulk materials for three different inclinations: 0◦, 45◦, and 90◦ relative to the build plate. Dynamic Young’s modulus measurements and tensile tests were used to determine the mechanical anisotropy. Some tensile specimens were also subjected to residual stress measurement via neutron diffraction, porosity determination with X-ray micro-computed tomography (μCT), and texture analysis with electron backscatter diffraction (EBSD). These investigations revealed that the specimens exhibited near full density and the detected defects were spherical. Furthermore, the residual stresses in the loading direction were between −74 ± 24 MPa and 137 ± 20 MPa, and the EBSD measurements showed a preferential ⟨110⟩ orientation parallel to the build direction. A crystal plasticity model was used to analyze the elastic anisotropy and the anisotropic yield behavior of the AM specimens, and it was able to capture and predict the experimental behavior accurately. Overall, it was shown that the mechanical anisotropy of the tested specimens was mainly influenced by the crystallographic texture. KW - Mechanical anisotropy KW - Residual stress KW - Crystal plasticity KW - Selective laser melting (SLM) KW - Laser beam melting (LBM) PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-511719 SN - 0921-5093 VL - 799 SP - 140154 PB - Elsevier B.V. AN - OPUS4-51171 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -