TY - JOUR A1 - Bruno, Giovanni A1 - Buljak, V. T1 - Numerical modeling of thermally induced microcracking in porous ceramics: An approach using cohesive elements JF - Journal of the European Ceramic Society N2 - A numerical framework is developed to study the hysteresis of elastic properties of porous ceramics as a function of temperature. The developed numerical model is capable of employing experimentally measured crystallographic orientation distribution and coefficient of thermal expansion values. For realistic modeling of the microstructure, Voronoi polygons are used to generate polycrystalline grains. Some grains are considered as voids, to simulate the material porosity. To model intercrystalline cracking, cohesive elements are inserted along grain boundaries. Crack healing (recovery of the initial properties) upon closure is taken into account with special cohesive elements implemented in the commercial code ABAQUS. The numerical model can be used to estimate fracture properties governing the cohesive behavior through inverse analysis procedure. The model is applied to a porous cordierite ceramic. The obtained fracture properties are further used to successfully simulate general non-linear macroscopic stress-strain curves of cordierite, thereby validating the model. KW - Interfacial strength KW - Cordierite KW - Young’s modulus KW - Thermal expansion KW - Hysteresis KW - Inverse analysis KW - Cohesive finite elements PY - 2018 DO - https://doi.org/10.1016/j.jeurceramsoc.2018.03.041 SN - 0955-2219 VL - 38 IS - 11 SP - 4099 EP - 4108 PB - Elsevier Ltd. AN - OPUS4-45117 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bruno, Giovanni A1 - Kachanov, M. A1 - Sevostianov, I. A1 - Shyam, A. T1 - Micromechanical modeling of non-linear stress-strain behavior of polycrystalline microcracked materials under tension JF - Acta Materialia N2 - The stress-strain behavior of microcracked polycrystalline materials (such as ceramics or rocks) underconditions of tensile, displacement-controlled, loading is discussed. Micromechanical explanation andmodeling of the basic features, such as non-linearity and hysteresis in stress-strain curves, is developed,with stable microcrack propagation and “roughness” of intergranular cracks playing critical roles. Ex-periments involving complex loading histories were done on large- and medium grain sizeb-eucryptiteceramic. The model is shown to reproduce the basic features of the observed stress-strain curves. KW - Nonlinearity KW - Stress-strain relations KW - Hysteresis KW - Polycrystals PY - 2018 DO - https://doi.org/10.1016/j.actamat.2018.10.024 SN - 1359-6454 SN - 1873-2453 VL - 164 SP - 50 EP - 59 PB - Elsevier Ltd. AN - OPUS4-46515 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -